综述

N-错位卟啉锰、铁和钴配合物的合成及其应用

  • 李万红 ,
  • 穆应红 ,
  • 王新 ,
  • 李星 ,
  • 刘海洋 ,
  • 彭素红
展开
  • a 宜春学院 化学与生物工程学院 宜春 336000
    b 华南理工大学 化学系 广州 510641

李万红, 就读于宜春学院化学与生物工程学院, 2021级药学专业硕士生, N-错位卟啉金属配合物的合成及应用研究.

穆应红, 就读于宜春学院化学与生物工程学院, 2023级药学专业硕士生, N-错位卟啉金属配合物的合成及应用研究.

王新, 就读于宜春学院化学与生物工程学院, 2020级化学专业本科生, N-错位卟啉金属配合物的合成及应用研究.

李星, 就读于宜春学院化学与生物工程学院, 2017级应用化学本科生, N-错位卟啉金属配合物的合成及应用研究.

刘海洋, 1997年博士毕业于中山大学化学专业, 现任华南理工大学化学与化工学院教授. 广东省高等学校“千百十工程”第三批培养对象. 广东省化学会无机化学专业委员会委员. 长期致力于金属卟啉类大环化合物的催化, 光动力抗肿瘤, 超快速光物理化学过程, 电催化材料与燃料电池研究.

彭素红, 2016年博士毕业于华南理工大学无机化学专业. 现任宜春学院化学与生物工程学院副教授. 主要研究方向为N-错位卟啉金属配合物的合成及应用研究.

收稿日期: 2024-02-15

  网络出版日期: 2024-04-12

基金资助

国家自然科学基金(21671068); 宜春学院2018地方发展研究中心项目(DF2018021); 江西省教育厅科学技术项目(GJJ2201723); 江西省教育厅科学技术项目(GJJ2201724); 江西省卫生健康委科技计划项目(202212701); 绿色化工技术福建省高校重点实验室开放基金(WYKF-GCT2022-1)

Synthesis of N-confused Porphyrin Manganese, Iron and Cobalt Complexes and Their Applications

  • Wanhong Li ,
  • Yinghong Mu ,
  • Xin Wang ,
  • Xing Li ,
  • Haiyang Liu ,
  • Suhong Peng
Expand
  • a College of Chemsitry and Bioengineering, Yichun University, Yichun 336000, China
    b Department of Chemistry, South China University of Technology, Guangzhou 510641, China

Received date: 2024-02-15

  Online published: 2024-04-12

Supported by

National Natural Science Foundation of China(21671068); 2018 local Development Research Center Project of Yichun Univeristy(DF2018021); Science and Technology Research Project of Education Comission of Jiangxi Province(GJJ2201723); Science and Technology Research Project of Education Comission of Jiangxi Province(GJJ2201724); science and technology research project of health commission of Jiangxi province(202212701); Open Fund of Key Laboratory of Green Chemical Technology of Fujian Province University(WYKF-GCT2022-1)

摘要

N-错位卟啉锰、铁和钴配合物的合成与应用研究已成为当今卟啉化学的前沿课题之一. 本文综述了N-错位卟啉锰、铁和钴配合物的合成及其在催化化学和生物化学等领域的研究进展, 系统介绍了N-错位卟啉锰、铁和钴配合物的合成及其在催化烯烃氧化、环丙烷化、亚硝酸根还原酶和化学核酸酶等领域的应用.

本文引用格式

李万红 , 穆应红 , 王新 , 李星 , 刘海洋 , 彭素红 . N-错位卟啉锰、铁和钴配合物的合成及其应用[J]. 化学学报, 2024 , 82(5) : 541 -550 . DOI: 10.6023/A24020052

Abstract

Study on the synthesis and applications of N-confused porphyrin manganese, iron and cobalt complexes has become one of the hot topics of porphyrin chemistry. Compared with the coordination chemistry of porphyrin, that of N-confused porphyrin is complicated because of the peripheral nitrogen atom, the intramolecular C—H bond and NH tautomerism. N-confused porphyrin has two NH tautomers, isomer A and isomer B. Varied functions are observed in the coordination chemistry of N-confused porphyrin such as stabilization of unusual metal oxidation states and metal-carbon bond formation. N-confused porphyrins have flexible character toward the metal oxidation state. Removal of the number of hydrogen atoms from one to three will result in a monanionic, dianionic and trianionic macrocycle. The various metal oxidation states are observed in N-confused porphyrin manganese, iron and cobalt complexes. The monovalent character of N-confused porphyrin is observed in cobalt chemistry such as CoII(2-N-RNCTPP)Cl and CoII(NCTPP). The cobalt metal takes a valence of +2 since CoII(2-N-RNCTPP)Cl has a monoanionic axial ligand and N-confused porphyrin ligand. The squar-planar Co(Ⅱ) complex CoII(NCTPP) exists the cobalt-carbon bond. The divalent and trivalent characters of N-confused porphyrins are observed in manganese, iron and cobalt chemistry. In Mn(Ⅱ) and Fe(Ⅱ) complexes of N-confused porphyrin MnII(NHCTPP)Br and FeII(NHCTPP)Br, oxidation of the metal center is observed through intramolecular C—H bond activation of N-confused porphyrin ligand, which can be converted into Mn(Ⅲ) and Fe(Ⅲ) complexes Mn(NCTPP)Br and Fe(NCTPP)Br on exposure to air in solutions. {FeNO}6 with a linear Fe-NO conformation is observed in the iron chemistry of N-confused porphyrin, which is unusually stable among the porphyrin iron nitrosyl complexes. It implies that iron N-confused porphyrin complexes can be used to study NO delivery and storage. This review covers the progress on the synthesis of N-confused porphyrin manganese, iron and cobalt complexes and their applications in the field of catalytic chemistry and biological chemistry. The synthesis methods of N-confused porphyrin manganese, iron and cobalt complexes and their applications in catalytic oxidation, cyclopropanation of alkene, nitrate reductase activity and chemical nuclease activity are introduced systematically.

参考文献

[1]
Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. Chem. Rev. 2004, 104, 561.
[2]
Geier, G. R.; Haynes, D. M.; Lindsey, J. S. Org. Lett. 1999, 1, 1455.
[3]
Harvey, J. D.; Ziegler, C. J. J. Inorg. Biochem. 2006, 99, 869.
[4]
Yu, X. Y.; Liao, Z. X.; Jiang, B. F.; Zheng, L. Y.; Li, X. F. Spectrochim. Acta A 2014, 133, 372.
[5]
Fields, K. B.; Engle, J. T.; Sripothongnak, S.; Kim, C.; Zhang, X. P.; Ziegler, C. J. Chem. Commun. 2011, 47, 749.
[6]
Yamamoto, T.; Toganoh, M.; Furuta, H. Dalton Trans. 2012, 41, 9154.
[7]
Peng, S. H.; Wang, L. L.; Cai, S. S.; Xiao, H. Q.; Zhao, X. T.; Wang, H.; Liu, H. Y. J. Porphyr. Phthalocya. 2022, 26, 195.
[8]
Li, W. H.; Yu, M. Y.; Wang, L. L.; Zhu, D. H.; Peng, S. H.; Wang, H.; Liu, H. Y. Acta Chim. Sinica 2023, 81, 345 (in Chinese).
[8]
(李万红, 于明月, 王丽丽, 朱德煌, 彭素红, 王惠, 刘海洋, 化学学报, 2023, 81, 345.)
[9]
Yu, X. Y.; Liao, Z. X.; Jiang, B. F.; Zheng, L. Y.; Li, X. F. Spectrochim. Acta A 2014, 133, 372.
[10]
Thomas, A. P.; Babu, P. S.; Asha, N. S.; Ramakrishnan, S.; Ramaiah, D.; Chandrashekar, T. K.; Srinivasan, A.; Pillai, M. R. J. Med. Chem. 2012, 55, 5110.
[11]
Peng, S. H.; Zhou, R.; Zou, H. B. Chinese J. Org. Chem. 2019, 39, 3384 (in Chinese).
[11]
(彭素红, 周蓉, 邹怀波, 有机化学, 2019, 39, 3384.)
[12]
Toganoh, M.; Furuta, H. Chem. Rev. 2022, 122, 8313.
[13]
Deng, F. L.; Ge, X. R.; Deng, Z. Y.; Xu, L.; Rao, Y. T.; Yin, B. S.; Zhou, M. B.; Song, J. X.; Osuka, A. Inorg. Chem. 2024, 63, 5769.
[14]
Chung, C. H.; Hsu, K. C.; Lee, H.; Hung, C. H. Chemistry 2019, 77, 379 (in Chinese).
[14]
(庄川弘, 许凯淳, 李向, 洪政雄, 化学, 2019, 77, 379.)
[15]
Miyazaki, T.; Fukuyama, K.; Mashita, S.; Deguchi, Y.; Yamamoto, T.; Ishida, M.; Mori, S.; Furuta, H. ChemPlusChem 2019, 84, 603.
[16]
dela Cruz, J.; Ruamps, S.; Arco, S.; Hung, C. H. Dalton Trans. 2019, 48, 7527.
[17]
Ge, Y. S.; Cheng, G. E.; Xu, N. F.; Wang, W. Z.; Ke, H. Z. Catal. Sci. Technol. 2019, 9, 4255.
[18]
Hua, W.; Liu, T. T.; Zheng, Z. Y.; Yuan, H. H.; Xiao, L.; Feng, K.; Hui, J. S.; Deng, Z.; Ma, M. T.; Cheng, J.; Song, D. Q.; Lyu, F. L.; Zhong, J.; Peng, Y. Angew. Chem. Int. Ed. 2024, e202315922.
[19]
Koniarz, S.; Szyde?ko, K.; Bia?ek, M. J.; Hurej, K.; Chmielewski, P. J. Adv. Sci. 2024, 11, 2306696.
[20]
Bohle, D. S.; Chen, W. C.; Hung, C. H. Inorg. Chem. 2002, 41, 3334.
[21]
Harvey, J. D.; Zielger, C. J. Chem. Commun. 2002, 1942.
[22]
Harvey, J. D.; Zielger, C. J. Chem. Commun. 2003, 2890.
[23]
Hung, S. W.; Yang, F. A.; Chen, J. H.; Wang, S. S.; Tung, J. Y. Inorg. Chem. 2008, 47, 7202.
[24]
Hasio, D. Z.; Chen, J. H.; Wang, S. S.; Tung, J. Y. Polyhedron 2012, 31, 339.
[25]
Yang, C.; Tsai, M. Y.; Hung, S. W.; Chen, J. H.; Wang, S. S.; Tung, J. Y. Polyhedron 2012, 37, 1.
[26]
Chen, W. C.; Hung, C. H. Inorg. Chem. 2001, 40, 5070.
[27]
Wang, Y. C.; Chen, J. H.; Wang, S. S.; Tung, J. Y. Inorg. Chem. 2013, 52, 10711.
[28]
Harvey, J. D.; Ziegler, C. J. Chem. Commun. 2004, 14, 1666.
[29]
Zilbermann, I.; Maimon, E.; Ydgar, R.; Shames, A. I.; Korin, E.; Soifer, L.; Bettelheim, A. Inorg. Chem. Commun. 2004, 7, 1238.
[30]
Peng, S. H.; Mahmood, M. H. R.; Zou, H. B.; Yang, S. B.; Liu, H. Y. J. Mol. Catal. A: Chem. 2014, 395, 180.
[31]
Peng, S. H.; Lv, B. B.; Ali, A.; Wang, J. M.; Ying, X.; Wang, H.; Liu, J. B.; Ji, L. N.; Liu, H. Y. J. Porphyr. Phthalocya. 2016, 20, 624.
[32]
Ikawa, Y.; Moriyama, S.; Harada, H.; Furuta, H. Org. Biomol. Chem. 2008, 6, 4157.
[33]
Du, Y. H.; Zhang, D.; Chen, W.; Zhang, M.; Zhou, Y. Y.; Zhou, X. Bioorg. Med. Chem. 2010, 18, 1111.
[34]
Bigey, P.; S?nnichsen, S. H.; Meunier, B.; Nielsen, P. E. Bioconjug. Chem. 1997, 8, 267.
[35]
Lu, J.; Liu, H. Y.; Shi, L.; Wang, S. L.; Ying, X.; Zhang, L.; Ji, L. N.; Zang, L. Q.; Chang, C. K. Chin. Chem. Lett. 2011, 22, 101.
[36]
Huang, J. T.; Wang, X. L.; Zhang, Y.; Mahmood, M. H. R.; Huang, Y. Y.; Ying, X.; Ji, L. N.; Liu, H. Y. Transit. Metal Chem. 2013, 38, 283.
[37]
Zhang, Y.; Wang, Q.; Wen, J. Y.; Wang, X. L.; Mahmood, M. H. R.; Ji, L. N.; Liu, H. Y. Chin. J. Chem. 2013, 31, 1321.
[38]
Hegde, A. H.; Prashanth, S. N.; Seetharamappa, J. J. Pharm. Biomed. Anal. 2012, 63, 40.
[39]
Cui, Y. R.; Hao, E. J.; Hui, G. Q.; Guo, W.; Cui, F. L. Spectrochim. Acta A 2013, 110, 92.
[40]
Ching, W. M.; Chuang, C. H.; Wu, C. W.; Peng, C. H.; Hung, C. H. J. Am. Chem. Soc. 2009, 131, 7952.
[41]
Ching, W. M.; Chen, P. P. Y.; Hung, C. H. Dalton Trans. 2017, 46, 15087.
[42]
Iwanaga, O.; Miyanishi, M.; Tachibana, T.; Miyazaki, T.; Shiota, Y.; Yoshizawa, K.; Futura, H. Molecules 2022, 27, 7266.
[43]
Miyazaki, T.; Yamamoto, T.; Mashita, S.; Deguchi, Y.; Fukuyama, K.; Ishida, M.; Mori, S.; Furuta, H. Eur. J. Inorg. Chem. 2018, 2, 203.
[44]
Chuang, C. H.; Liaw, W. F.; Hung, C. H. Angew. Chem. Int. Ed. 2016, 55, 5190.
[45]
Sun, M.; Xie, Y. S.; Baryshr, G.; Wu, X. Y.; ?gren, H.; Li, S. J. Chem. Sci. 2024, 15, 2047.
[46]
Li, Q. H.; Ishida, M.; Wang, Y. Y.; Sha, F.; Wu, X. Y.; ?gren, H.; Furuta, H.; Xie, Y. S. Angew. Chem. Int. Ed. 2023, 62, e202212174.
[47]
Li, C. J.; Li, Q. Z.; Shao, J. W.; Tong, Z. F.; Furuta, H.; Xie, Y. S. J. Am. Chem. Soc. 2020, 142, 17195.
[48]
Su, G. X.; Li, Q. Z.; Ishida, M.; Li, C. J.; Sha, F.; Wu, X. Y.; Wang, L.; Baryshnikov, G.; Li, D. W.; ?gren, H.; Furuta, H.; Xie, Y. S. Angew. Chem. Int. Ed. 2020, 59, 1537.
[49]
Ren, Z. X.; Zhao, B.; Xie, J. Small 2023, 19, 2301818.
[50]
Li, Q. Z.; Li, C. J.; Baryshnikov, G.; Ding, Y. B.; Zhao, C. X.; Gu, T. T.; Sha, F.; Liang, X.; Zhu, W. H.; Wu, X. Y.; ?gren, H.; Sessler, J. L.; Xie, Y. S. Nature Commun. 2020, 11, 5289.
文章导航

/