综述

DNA纳米花生物医学研究进展概述

  • 王丹钰 ,
  • 郭子涵 ,
  • 郭梦珂 ,
  • 易桦 ,
  • 黄梦雨 ,
  • 段捷 ,
  • 张开翔
展开
  • a 郑州大学药学院 郑州 450001
    b 河南省肿瘤重大疾病靶向治疗与诊断重点实验室 郑州 450001
王丹钰, 郑州大学药学院2021级药学专业博士研究生. 以第一作者在Nat. Commun., ACS Nano, Small, Adv. Healthcare Mater.及ACS Appl. Mater. Interfaces期刊发表研究论文5篇, 累计发表SCI收录论文10篇, 被引180余次, 参与多项国家自然科学基金项目.
张开翔, 郑州大学药学院教授, 博士生导师. 以第一作者或通讯作者在Nat. Commun., Sci. Adv., J. Am. Chem. Soc., Angew. Chem., Int. Ed., Adv. Mater.Chem. Soc. Rev.等期刊发表研究论文50余篇, 累计发表SCI收录论文100余篇, 被引5000余次, 作为项目负责人承担国家自然科学基金项目4项.

收稿日期: 2024-03-08

  网络出版日期: 2024-04-29

基金资助

国家自然科学基金(22122409); 国家自然科学基金(22377110); 河南省优势学科培育基金(222301420019)

Overview of Advances in DNA Nanoflower Biomedical Research

  • Danyu Wang ,
  • Zihan Guo ,
  • Mengke Guo ,
  • Hua Yi ,
  • Mengyu Huang ,
  • Jie Duan ,
  • Kaixiang Zhang
Expand
  • a School of Pharmacy, Zhengzhou University, Zhengzhou 450001
    b Henan Provincial Key Laboratory of Targeted Therapy and Diagnosis of Major Tumor Diseases, Zhengzhou 450001

Received date: 2024-03-08

  Online published: 2024-04-29

Supported by

National Natural Science Foundation of China(22122409); National Natural Science Foundation of China(22377110); Henan Province Advantage Discipline Cultivation Fund(222301420019)

摘要

DNA纳米结构因其可编程性、自主设计性和良好的生物相容性, 在生物医学领域显示出巨大的应用潜力. DNA纳米花(DNA nanoflower, DNF)作为一种独特的DNA-有机无机杂化纳米结构, 在近几年内引起了相当多的关注. 其矿化的无机内核不仅有助于维持DNA的稳定性, 还提供了金属离子的辅助矿化功能. 其中DNF凭借其高密度的核酸序列和良好的载荷能力, 可高效装载药物、荧光探针、酶及核酸适配体等功能性分子. 此外, 还可通过控制反应条件调节纳米颗粒的尺寸, 实现在不同生理环境下的高渗透、长滞留效应, 进而应用于生物医学的多个领域. 综述了DNF的合成及其生物医学应用. 首先简要介绍了DNF的合成方法以及合成条件的控制; 其次总结了工程化的DNF在生物检测、生物成像和药物治疗方面的应用; 最后, 讨论了DNF在生物医学应用中的挑战并对其在实际临床的应用进行展望. 未来基于DNF更广泛的生物医学发展有待研究人员们的探索.

本文引用格式

王丹钰 , 郭子涵 , 郭梦珂 , 易桦 , 黄梦雨 , 段捷 , 张开翔 . DNA纳米花生物医学研究进展概述[J]. 化学学报, 2024 , 82(6) : 677 -689 . DOI: 10.6023/A24030075

Abstract

DNA nanostructures show great potential for biomedical applications due to their programmability, autonomous design and good biocompatibility. DNA nanoflower (DNF), as a unique DNA-organic inorganic hybrid nanostructure, has attracted considerable attention within recent years. Its mineralized inorganic core not only helps to maintain the stability of DNA, but also provides an auxiliary mineralization function of metal ions. Among them, DNFs can efficiently load functional molecules such as drugs, fluorescent probes, enzymes, nucleic acid aptamers, and so on, by virtue of their high-density nucleic acid sequences and good loading capacity. In addition, the size of the nanoparticles can be adjusted by controlling the reaction conditions, which is suitable for high permeability and long retention effects in different physiological environments, and thus applied in many fields of biomedicine. In this paper, the synthesis and biomedical applications of DNF are reviewed. Firstly, the main synthesis methods of DNF, rolling circle amplification (RCA) as well as salt aging method, are firstly introduced in detail, and different reaction conditions including enzymes, reaction time, temperature, pH, etc., the synthesis of DNF with different cationic metal cores or modification of DNF by different substances are highlighted for the functional as well as structural alteration of DNF, which can adapt the DNF to the applications in various scenarios. Secondly, the biomedical applications of DNF, including the latest research progress in bio-detection, bio-imaging and drug therapy, are demonstrated. Due to the unique physicochemical properties of DNF, including good biocompatibility, biodegradability, and structural and functional diversities, DNF has become a kind of nucleic acid nanomaterials with great potentials for applications. Finally, the prospects for the application of DNF and the current challenges are summarized, and great hopes are placed on researchers to explore the understanding of the formation mechanism and function of DNF as well as the applied research of metal salt cores to effectively promote the development of DNF-based biomedicine.

参考文献

[1]
Seeman, N. C. J. Theor. Biol. 1982, 99, 237.
[2]
Zhu, G.-Z.; Hu, R.; Zhao, Z.-L.; Chen, Z.; Zhang, X.-B.; Tan, W.-H. J. Am. Chem. Soc. 2013, 135, 16438.
[3]
Baker, Y. R.; Chen, J.-F.; Brown, J.; El-Sagheer, A. H.; Wiseman, P.; Johnson, E.; Goddard, P.; Brown, T. Nucleic Acids Res. 2018, 46, 7495.
[4]
Baker, Y. R.; Yuan, L.; Chen, J.; Belle, R.; Carlisle, R.; El-Sagheer, A. H.; Brown, T. Nucleic Acids Res. 2021, 49, 9042.
[5]
Beyer, S.; Nickels, P.; Simmel, F. C. Nano Lett. 2005, 5, 719.
[6]
Wang, Y.-T.; Wang, Z.-Z.; Zhan, Z.-X.; Yan, L-N.; Wang, L.-J.; Xu, H.-Y. Foods 2022, 11, 1852.
[7]
Lv, J.; Dong, Y.-H.; Gu, Z.; Yang, D.-Y. Chem.-Eur. J. 2020, 26, 14512.
[8]
Kim, E.; Agarwal, S.; Kim, N.; Hage, F. S.; Leonardo, V.; Gelmi, A.; Stevens, M. ACS Nano 2019, 13, 2888.
[9]
Lv, Y.-F.; Hu, R.; Zhu, G.-Z.; Zhang, X.-B.; Mei, L.; Liu, Q.-L.; Qiu, L.-P.; Wu, C.-C.; Tan, W.-H. Nat. Protoc. 2015, 10, 1508.
[10]
Park, K. S.; Batule, B. S.; Chung, M.; Kang, K. S.; Park, T. J.; Kim, M. I.; Park, H. G. J. Mater. Chem. B 2017, 5, 2231.
[11]
Xiang, J.-H.; Feng, K.; Wan, T.; He, S.-Y.; Deng, H.-L.; Li, D.-R. Microchemical Journal 2024, 200, 110289.
[12]
Zhao, Z.; Fu, J.; Dhakal, S.; Johnson-Buck, A.; Liu, M.; Zhang, T.; Woodbury, N. W.; Liu, Y.; Walter, N. G.; Yan, H. Nat. Commun. 2016, 7, 10619.
[13]
Yan, Y.-C.; Li, J.; Li, W.-H.; Wang, Y.; Song, W.-L.; Bi, S. Nanoscale 2018, 10, 22456.
[14]
Kim, E.; Zwi-Dantsis, L.; Reznikov, N.; Hansel, C. S.; Agarwal, S.; Stevens, M. M. Adv. Mater. 2017, 29, 1701086.
[15]
Ge, J.; Lei, J.-D.; Zare, R. N. Nat. Nanotechnol. 2012, 7, 428.
[16]
Liang, Y.; Zhang, J.-G.; Xu, C.-L.; Wang, J.-J.; Han, W.-S.; Yang, J.-L.; Wu, S.-X.; An, J-Y.; Liu, J.-J.; Zhang, Z.-Z.; Shi, J.-J.; Zhang, K.-X. ACS Nano 2023, 17, 15025.
[17]
Li, C.-Y.; Meng, Y.; Wang, S.-S.; Qian, M.; Wang, J.-X.; Lu, W.-Y.; Huang, R.-Q. ACS Nano 2015, 9, 12096.
[18]
Li, S.-K.; Chen, A.-Y.; Niu, X.-X.; Liu, Z.-T.; Du, M.; Chai, Y.-Q.; Yuan, R.; Zhuo, Y. Chem. Commum. 2017, 53, 9624.
[19]
Li, Y.-X.; Wang, W.-Q.; Gong, H.-X.; Xu, J.-H.; Yu, Z.-C.; Wei, Q.-H.; Tang, D.-P. J. Mater. Chem. B 2021, 9, 6818.
[20]
Yang, L.-M.; Liu, B.; Li, N.; Tang, B. Acta Chim. Sinica 2017, 75, 1047. (in Chinese)
[20]
(杨立敏, 刘波, 李娜, 唐波, 化学学报, 2017, 75, 1047.)
[21]
Wu, T.-T.; Yang, Y.-M.; Cao, Y.; Song, Y.-C.; Xu, L.-P.; Zhang, X.-J.; Wang, S.-T. ACS Appl. Mater. Interfaces 2018, 10, 42050.
[22]
Zeng, R.-J.; Wang, J.; Wang, Q.-S.; Tang, D.-P.; Lin, Y. Talanta 2021, 221, 121600.
[23]
He, H.-Z.; Cheng, L.-J.; He, Y.-H.; Chen, J.-M.; Song, L.; Yang, Y.-Y.; Zhang, Y.; Lin, Z.-Y.; Hong, G.-L. Sens. Actuators, B 2022, 371, 132532.
[24]
Edgar, J. R. BMC Biol. 2016, 14, 46.
[25]
Soung, Y. H.; Ford, S.; Zhang, V.; Chung, J. Cancers 2017, 9, 8.
[26]
Zhang, X.-Y.; Zhu, X.-Y.; Li, Y.-F.; Hai, X.; Bi, S. Talanta 2023, 258, 124456.
[27]
Gao, Y.-F.; Yan, Y.-C.; Cao, J.-Y.; Bi, S. J. Instrum. Anal. 2022, 41, 601. (in Chinese)
[27]
(高雨菲, 闫永存, 曹景玉, 毕赛, 分析测试学报, 2022, 41, 601.)
[28]
Tamima, U.; Sarkar, S.; Islam, M. R.; Shil, A.; Kim, K. H.; Reo, Y. J.; Jun, Y. W.; Banna, H.; Lee, S.; Ahn, K. H. Angew. Chem., Int. Ed. 2023, 62, e202300580.
[29]
Tan, K.-Y.; Li, C.-Y.; Li, Y.-F.; Fei, J.; Yang, B.; Fu, Y.-J.; Li, F. Anal. Chem. 2017, 89, 1749.
[30]
Kim, N.; Kim, E.; Kim, H.; Thomas, M. R.; Najer, A.; Stevens, M. M. Adv. Mater. 2021, 33, 2007738.
[31]
Ma, Y.-X.; Chen, Q.-H.; Pan, X.-Y.; Zhang, J. Top. Curr. Chem. 2021, 379, 10.
[32]
Zhu, H.; Fan, J.; Du, J.; Peng, X. Acc. Chem. Res. 2016, 49, 2115.
[33]
Hu, R.; Zhang, X.-B.; Zhao, Z.-L.; Zhu, G.-Z.; Chen, T.; Fu, T.; Tan, W.-H. Angew. Chem., Int. Ed. 2014, 53, 5821.
[34]
Deng, R.-J.; Zhang, K.-X.; Wang, L.-D.; Ren, X.-J.; Sun, Y.-P.; Li, J.-H. Chem 2018, 4, 1373.
[35]
Li, Y.; Wu, Y.-H.; Xu, R.; Guo, J.-L.; Quan, F.-L.; Zhang, Y.; Huang, D.; Pei, Y.; Gao, H.; Liu, W.; Liu, J.-J.; Zhang, Z.-Z.; Deng, R.-J.; Shi, J.-J.; Zhang, K.-X. Nat. Commun. 2023, 14, 7722.
[36]
Dan, Q.; Jiang, X.-P.; Wang, R.; Dai, Z.-F.; Sun, D. Adv. Sci. 2023, 10, 2207090.
[37]
Zhao, H.-X.; Lv, J.-G.; Li, F.; Zhang, Z.-L.; Zhang, C.-Z.; Gu, Z.; Yang, D.-Y. Biomaterials 2021, 268, 120591.
[38]
Cesur-Ergün, B.; Demir-Dora, D. J. Gene Med. 2023, 25, e3550.
[39]
Iglesias-Lopez, C.; Agustí, A.; Obach, M.; Vallano, A. Front. Pharmacol. 2019, 10, 921.
[40]
Li, C.; Si, X.; Li, J.-B.; Zhang, Y. Acta Chim. Sinica 2023, 81, 1240. (in Chinese)
[40]
(李琛, 司笑, 李金波, 张艳, 化学学报, 2023, 81, 1240.)
[41]
Jin, Y.; Li, Z.-H.; Liu, H.-F.; Chen, S.-Z.; Wang, F.; Wang, L.; Li, N.; Ge, K.; Yang, X.-J.; Liang, X.-J. NPG Asia Mater. 2017, 9, 365.
[42]
Huang, C.-H.; Lee, K.-C.; Doudna, J. A. Trends in Cancer 2018, 4, 499.
[43]
Shi, J.-J.; Yang, X.; Li, Y.-N.; Wang, D.-Y.; Liu, W.; Zhang, Z.-Z.; Liu, J.-J.; Zhang, K.-X. Biomaterials 2020, 256, 120221.
[44]
Krieg, A. M. Nat. Rev. Drug Discovery 2006, 5, 471.
[45]
Krieg, A. M. Oncogene 2008, 27, 161.
[46]
Wang, D.-Y.; Liu, J.-W.; Duan, J.; Ma, Y.-R.; Gao, H.; Zhang, Z.-Z.; Liu, J.-J.; Shi, J.-J.; Zhang, K.-X. ACS Appl. Mater. Interfaces 2022, 14, 44183.
[47]
Zhang, L.-Q.; Zhu, G.-Z.; Mei, L.; Wu, C.-C.; Qiu, L.-P.; Cui, C.; Liu, Y.; Teng, I. T.; Tan, W.-H. ACS Appl. Mater. Interfaces 2015, 7, 24069.
[48]
Wang, J.; Gan, M.-Z. Int. J. Mol. Sci. 2022, 23, 16030.
[49]
Wang, J.; Wang, H.-M.; Wang, H.; He, S.-Z.; Li, R.-M.; Deng, Z.; Liu, X.-Q.; Wang, F. ACS Nano 2019, 13, 5852.
[50]
Zhang, K.-X.; Liu, J.-J.; Song, Q.-L.; Wang, D.-Y.; Shi, J.-J. Chem. J. Chin. Univ. 2020, 41, 1461. (in Chinese)
[50]
(张开翔, 刘军杰, 宋巧丽, 王丹钰, 史进进, 高等学校化学学报, 2020, 41, 1461.)
[51]
Zhang, L.-L.; Abdullah, R.; Hu, X.-X.; Bai, H.-R.; Fan, H.-H.; He, L.; Liang, H.; Zou, J.-M.; Liu, Y.-F.; Sun, Y.; Zhang, X.-B.; Tan, W.-H. J. Am. Chem. Soc. 2019, 141, 4282.
[52]
Liao, H.-J.; Cao, Y.-C.; Hu, C.; Shen, S.-F.; Zhang, Z.-F.; Li, D.-R.; Du, Y.-H. Mater. Today Bio 2024, 25, 101005.
[53]
Zhang, K-X.; Liu, J.-J.; Song, Q.-L.; Yang, X.; Wang, D.-Y.; Liu, W.; Shi, J.; Zhang, Z. ACS Appl. Mater. Interfaces 2019, 11, 46604.
[54]
Gu, C.; Liu, X.-L.; Luo, L.; Chen, J.-Q.; Zhou, X.; Chen, G.-H.; Huang, X.; Yu, L.; Chen, Q.; Yang, Y. Angew. Chem., Int. Ed. 2023, 62, e202307020.
[55]
Chen, X.; He, X.-Y.; Gao, R.-X.; Lan, X.-Y.; Zhu, L.-J.; Chen, K.-R.; Hu, Y.-Z.; Huang, K.-L.; Xu, W.-T. ACS Nano 2022, 16, 1036.
[56]
Ouyang, Q.; Liu, K.; Zhu, Q.; Deng, H.; Le, Y.; Ouyang, W.; Yan, X.; Zhou, W.; Tong, J. Small 2022, 18, e2107534.
[57]
Imashiro, C.; Takeshita, H.; Morikura, T.; Miyata, S.; Takemura, K.; Komotori, J. Sci. Rep. 2021, 11, 21466.
[58]
Ghahremani, F. H.; Sazgarnia, A.; Bahreyni-Toosi, M. H.; Rajabi, O.; Aledavood, A. Int. J. Hyperthermia 2011, 27, 625.
[59]
Shen, S.; Qiu, J.-C.; Huo, D.; Xia, Y.-N. Small 2023, 20, 2305426.
[60]
Hai, X.; Ji, M.-J.; Yu, K.-X.; Tian, T.; Cui, Z.-M.; Bi, S.; Zhang, X.-J. Mater. Today Nano 2023, 23, 100355.
[61]
Shi, J-J.; Wang, D.-Y.; Ma, Y.-R.; Liu, J.-W.; Li, Y.-N.; Reza, R.; Zhang, Z.-Z.; Liu, J.-J.; Zhang, K.-X. Small 2021, 17, 2104722.
文章导航

/