研究论文

双功能化合物靶向降解免疫检查点蛋白PD-L1

  • 陈从丽 ,
  • 师怀怀 ,
  • 郝芮 ,
  • 房丽晶 ,
  • 徐华栋
展开
  • a 常州大学 药学院 常州 213164
    b 中国科学院深圳先进技术研究院 生物医药与生物技术研究所 深圳 518055

收稿日期: 2024-02-01

  网络出版日期: 2024-05-09

基金资助

国家自然科学基金(22177015); 江苏省自然科学基金(BK20211334); 深圳市科委项目(JCYJ20220818101404010); 深圳市科委项目(JCYJ20220818100412028)

Bifunctional Compound for Targeted Degradation of the Immune Checkpoint Protein PD-L1

  • Congli Chen ,
  • Huaihuai Shi ,
  • Rui Hao ,
  • Lijing Fang ,
  • Huadong Xu
Expand
  • a School of Pharmacy, Changzhou University, Changzhou 213164
    b Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055

Received date: 2024-02-01

  Online published: 2024-05-09

Supported by

National Natural Science Foundation of China(22177015); Natural Science Foundation of Jiangsu Province(BK20211334); Shenzhen Science and Technology Program(JCYJ20220818101404010); Shenzhen Science and Technology Program(JCYJ20220818100412028)

摘要

本研究利用整合素促进的靶蛋白溶酶体降解策略, 设计合成了识别整合素受体αvβ3的小分子Gua-Azide以替代c(RGDyK)环肽, 通过连接子使其与PD-L1抑制剂BMS-8相连, 形成双功能小分子降解剂. 该降解剂能够通过内吞-溶酶体途径靶向降解细胞膜上的PD-L1靶标蛋白, 为开发癌症免疫治疗相关小分子药物开辟了新途径.

本文引用格式

陈从丽 , 师怀怀 , 郝芮 , 房丽晶 , 徐华栋 . 双功能化合物靶向降解免疫检查点蛋白PD-L1[J]. 化学学报, 2024 , 82(6) : 613 -620 . DOI: 10.6023/A24020042

Abstract

Programmed death ligand 1 (PD-L1) is a protein overexpressed in numerous tumor cells as an essential immune checkpoint that can facilitate immune escape of tumor cells through binding to PD-1 on T cells. Compared to antibody drugs targeting PD-L1 or PD-1, which are limited in clinical application due to their immunogenicity, high cost and low oral bioavailability, small molecule inhibitors exhibit better tissue and tumor penetration ability, as well as higher bioavailability. However, traditional small molecule inhibitors often face drug resistance issues and are difficult to inhibit protein-protein interactions. Targeted protein degradation (TPD) technologies achieve a more comprehensive suppression of protein activity by degrading the target protein, thereby eliminating its functions entirely. The strategy not only reduces the drug resistance but also enhances the therapeutic efficacy. In the previous study, we have developed the integrin-facilitated lysosome degradation (IFLD) strategy to degrade extracellular and cell membrane proteins by using bifunctional compounds containing a target protein-binding domain, and a cyclic RGD peptide as the integrin-binding domain, connected via a linker. The cyclic RGD peptide, which incorporates the sequence arginine-glycine-aspartic acid (RGD), has been extensively employed for the development of targeted drug delivery systems. It specifically recognizes the integrin αvβ3, which is overexpressed in a variety of tumor cells and plays a significant role in tumor-targeted drug delivery. Considering the instability of the RGD peptide, we designed and synthesized a small molecule compound, Gua-Azide, in this study to mimick the RGD (Arg-Gly-Asp) peptide to bind with αvβ3 integrin. Subsequently, we constructed a new IFLD degrader targeting PD-L1, BMS-Gua, through the conjugation of Gua-Azide with BMS-8, a small molecule with high binding affinity to PD-L1, by using click chemistry. The western blotting and immunofluorescence analysis verified that BMS-Gua, a bifunctional molecule degrader, could effectively induce the endocytosis and lysosomal degradation of PD-L1 through an integrin-dependent pathway, warranting further investigation for the development of tumor immunotherapy drugs.

参考文献

[1]
Zhang, X. Q.; Cheng, C.; Hou, J. Y.; Qi, X. Y.; Wang, X.; Han, P.; Yang, X. M. Cell. Mol. Immunol. 2019, 16, 392.
[2]
Gou, Q.; Dong, C.; Xu, H. H.; Khan, B.; Jin, J. H.; Liu, Q.; Shi, J. J.; Hou, Y. Z. Cell Death Dis. 2020, 11, 955.
[3]
Su, W.; Tan, M. X.; Wang, Z. H.; Zhang, J.; Huang, W. P.; Song, H. H.; Wang, X. Y.; Ran, H. T.; Gao, Y. F.; Nie, G. J.; Wang, H. Angew. Chem., Int. Ed. 2023, 62, e202218128.
[4]
Yang, Z. J.; Huang, C. J.; Wang, M. X. Oncol. Prog. 2020, 18, 772. (in Chinese)
[4]
(杨占菊, 黄长江, 王名雪, 癌症进展, 2020, 18, 772.)
[5]
Sathe, G.; Sapkota, G. P. Trends Pharmacol. Sci. 2023, 44, 786.
[6]
Sun, X. Y.; Gao, H. Y.; Yang, Y. Q.; He, M.; Wu, Y.; Song, Y. G.; Tong, Y.; Rao, Y. Signal Transduct. Tar. 2019, 4, 64.
[7]
He, M.; Cao, C. G.; Ni, Z. H.; Liu, Y. B.; Song, P. L.; Hao, S.; He, Y. N.; Sun, X. Y.; Rao, Y. Signal Transduct. Tar. 2022, 7, 181.
[8]
Zhang, C.; He, Y.; Sun, X.; Wei, W.; Liu, Y.; Rao, Y. Acta Mater. Med. 2023, 2, 409.
[9]
Pei, J. P.; Pan, X. L.; Wang, A. X.; Shuai, W.; Bu, F. Q.; Tang, P.; Zhang, S.; Zhang, Y. W.; Wang, G.; Ouyang, L. Chem. Commun. 2021, 57, 13194.
[10]
Li, Z. Y.; Zhu, C. G.; Ding, Y.; Fei, Y. Y.; Lu, B. X. Autophagy 2020, 16, 185.
[11]
Ji, C. H.; Kim, H. Y.; Lee, M. J.; Heo, A. J.; Park, D. Y.; Lim, S.; Shin, S.; Yang, W. S.; Jung, C. A.; Kim, K. Y.; Jeong, E. H.; Park, S. H.; Kim, S. B.; Lee, S. J.; Na, J. E.; Kang, J. I.; Chi, H. M.; Kim, H. T.; Kim, Y. K.; Kim, B. Y.; Kwon, Y. T. Nat. Commun. 2022, 13, 904.
[12]
Banik, S. M.; Pedram, K.; Wisnovsky, S.; Ahn, G.; Riley, N. M.; Bertozzi, C. R. Nature 2020, 584, 291.
[13]
Cotton, A. D.; Nguyen, D. P.; Gramespacher, J. A.; Seiple, I. B.; Wells, J. A. J. Am. Chem. Soc. 2021, 143, 593.
[14]
Zhang, H.; Han, Y.; Yang, Y. F.; Lin, F.; Li, K. X.; Kong, L. H.; Liu, H. X.; Dang, Y. J.; Lin, J.; Chen, P. R. J. Am. Chem. Soc. 2021, 143, 16377.
[15]
Wu, Y. Q.; Lin, B. Q.; Lu, Y. Z.; Li, L.; Deng, K. Y.; Zhang, S. H.; Zhang, H. M.; Yang, C. Y.; Zhu, Z. Angew. Chem., Int. Ed. 2023, 62, e202218106.
[16]
Zheng, J. W.; He, W. Y.; Li, J.; Feng, X. J.; Li, Y. Y.; Cheng, B. H.; Zhou, Y. M.; Li, M. Q.; Liu, K.; Shao, X. M.; Zhang, J. C.; Li, H. C.; Chen, L.; Fang, L. J. J. Am. Chem. Soc. 2022, 144, 21831.
[17]
Nieberler, M.; Reuning, U.; Reichart, F.; Notni, J.; Wester, H. J.; Schwaiger, M.; Weinmüller, M.; R?der, A.; Steiger, K.; Kessler, H. Cancers 2017, 9, 116.
[18]
Hatley, R. J. D.; Macdonald, S. J. F.; Slack, R. J.; Le, J.; Ludbrook, S. B.; Lukey, P. T. Angew. Chem., Int. Ed. 2018, 57, 3298.
[19]
Danhier, F.; Le Breton, A.; Préat, V. Mol. Pharmaceut. 2012, 9, 2961.
[20]
Chen, T. K.; Li, Q.; Liu, Z. L.; Chen, Y.; Feng, F.; Sun, H. P. Eur. J. Med. Chem. 2019, 161, 378.
[21]
Sulyok, G. A. G.; Gibson, C.; Goodman, S. L.; H?lzemann, G.; Wiesner, M.; Kessler, H. J. Med. Chem. 2001, 44, 1938.
[22]
Chai, Z. L.; Ran, D. N.; Lu, L. W.; Zhan, C. Y.; Ruan, H. T.; Hu, X. F.; Xie, C.; Jiang, K.; Li, J. Y.; Zhou, J. F.; Wang, J.; Zhang, Y. Y.; Fang, R. H.; Zhang, L. F.; Lu, W. Y. ACS Nano 2019, 13, 5591.
[23]
Wang, X.; Zhang, X. R.; Huang, Z. Y.; Fan, X. Y.; Chen, P. Acta Chim. Sinica 2021, 79, 406. (in Chinese)
[23]
(汪欣, 张贤睿, 黄宗煜, 樊新元, 陈鹏, 化学学报, 2021, 79, 406.)
[24]
Guzik, K.; Zak, K. M.; Grudnik, P.; Magiera, K.; Musielak, B.; T?rner, R.; Skalniak, L.; D?mling, A.; Dubin, G.; Holak, T. A. J. Med. Chem. 2017, 60, 5857.
文章导航

/