微波响应型CMF@CoS2/MoS2催化剂的制备及其用于木质素蒸气的催化重整
收稿日期: 2024-03-11
网络出版日期: 2024-05-13
基金资助
国家自然科学基金(31800497); 陕西省自然科学基础研究计划(2024JC-YBMS-140)
Fabrication of Microwave-responsive CMF@CoS2/MoS2 Catalyst and Highly Efficient Reforming of Lignin Vapor by Microwave Irradiation
Received date: 2024-03-11
Online published: 2024-05-13
Supported by
National Natural Science Foundation of China(31800497); Natural Science Basic Research Program of Shaanxi Province(2024JC-YBMS-140)
本研究以Anderson型多金属氧酸盐 (NH4)3[CoMo6O24H6]•6H2O为前驱体, 采用一步水热法制备微波响应型CMF@CoS2/MoS2催化剂. 当微波频率为2.45 GHz时, 催化剂拥有良好的微波吸收性能(介电损耗正切角值0.23), 证明了其拥有优异的微波响应能力. 木质素蒸气微波辅助催化解聚(MACD)实验表明, CMF@CoS2/MoS2显著提高了单酚产率(59.30%)和苯酚选择性(24.69%). 多物理场耦合分析表明, CMF@CoS2/MoS2由于其优异的微波吸收性, 能够通过“热点效应”增强局部反应温度, 使木质素蒸气(570 ℃)吸附于高温CoS2/MoS2活性组分(910 ℃)表面进一步促进其催化重整. 本工作开发的新型微波响应型CMF@CoS2/MoS2催化剂为从木质素炼制高价值酚类平台化合物提供了新的途径.
付祎帅 , 王文亮 , 苗晖 , 陈育彤 , 崔洋怡 , 王紫薇 , 潘佳文 , 肖国伟 . 微波响应型CMF@CoS2/MoS2催化剂的制备及其用于木质素蒸气的催化重整[J]. 化学学报, 2024 , 82(6) : 596 -603 . DOI: 10.6023/A24030079
To take the place of non-renewable resources derived from traditional petrochemical energy conversing of lignin into high-value platform chemicals has become one of the future research hotspots. Among many conversion technologies, microwave-assisted catalytic depolymerization technology is widely used in the catalytic reforming of lignin due to its advantages of block heating rate, low energy consumption, high product selectivity, etc.. The selection of catalysts plays a crucial role in the reforming of lignin. In this work, microwave-responsive CMF@CoS2/MoS2 catalyst was prepared by a one-step hydrothermal method using Anderson-type polymetallic oxides (NH4)3[CoMo6O24H6]•6H2O as precursors. The morphological features and microwave absorption properties of CMF@CoS2/MoS2 catalysts were characterized through scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscope (TEM) and 3656A vector network analyzer. The results showed that CMF@CoS2/MoS2 is composed of nanoflowers deposited on the CMF 3D skeleton. And CMF@CoS2/MoS2 has excellent microwave absorption properties (dielectric loss angle tangent of 0.23). The catalytic reforming of lignin vapor was carried out using a designed dynamic vapor flow reaction system, and the results showed that the CMF@CoS2/MoS2 catalyst possessed highly efficient catalytic reforming ability. The monophenol yield (59.30%) and phenol selectivity (24.69%) of the lignin depolymerization product were increased under the reaction conditions of 400 s, 1000 W, and 600 mL/min N2. Finite element analysis of the microwave-assisted catalytic depolymerization (MACD) of lignin reveals that the CMF@CoS2/MoS2 is capable of generating a “hotspot” effect under microwave irradiation to raise the local temperature of the 3D skeleton to 910 ℃ due to its excellent microwave absorption properties, which is a good example of the MACD of lignin. The heat exchange of lignin vapor with a lower temperature (570 ℃), captured during depolymerization, further promotes the catalytic reforming of lignin vapor. This is key to the efficient catalytic reforming of lignin vapor over the CMF@CoS2/MoS2 catalyst. In conclusion, this work provides a promising method for the efficient production of phenols from lignin over bifunctional CMF@CoS2/MoS2 catalyst with “wave-absorbing heat transfer” and “catalytic conversion”.
Key words: lignin; microwave; monophenols; phenol; catalyst
| [1] | Mo, B. C.; Chen, C. X.; Peng, J. S. Chin. J. Org. Chem. 2023, 43, 1215. (in Chinese) |
| [1] | (莫百川, 陈春霞, 彭进松, 有机化学, 2023, 43, 1215.) |
| [2] | Wong, S. S.; Shu, R. Y.; Zhang, J. G.; Liu, H. C.; Yan, N. Chem. Soc. Rev. 2020, 49, 5510. |
| [3] | Mondal, S.; Jatrana, A.; Maan, S.; Sharma, P. Environ. Chem. Lett. 2023, 21, 2171. |
| [4] | Bourbiaux, D.; Pu, J. J.; Rataboul, F.; Djakovitch, L.; Geantet, C.; Laurenti, D. Catal. Today 2021, 373, 24. |
| [5] | Wang, W. L.; Ma, Z. H.; Ma, Y. J.; Huang, J. L.; Fu, Y. S.; Miao, H.; Wu, J. C.; Dai, S. B. J. Shaanxi Univ. Sci. Technol. 2021, 39, 1. (in Chinese) |
| [5] | (王文亮, 马振浩, 马玉军, 黄佳乐, 付祎帅, 苗晖, 吴佳聪, 代松伯, 陕西科技大学学报, 2021, 39, 1.) |
| [6] | Liu, X. X.; Yan, L.; Fu, Y. Acta Chim. Sinica 2017, 75, 788. (in Chinese) |
| [6] | (刘新鑫, 严龙, 傅尧, 化学学报, 2017, 75, 788.) |
| [7] | Wang, W. L.; Shi, Y. J.; Dang, Z. P.; Tang, N.; Huang, J. L.; Wang, S. H. J. Shaanxi Univ. Sci. Technol. 2018, 36, 1. (in Chinese) |
| [7] | (王文亮, 时宇杰, 党泽攀, 唐宁, 黄佳乐, 王少华, 陕西科技大学学报, 2018, 36, 1.) |
| [8] | Shao, L. P.; Zhang, Q. L.; You, T. T.; Zhang, X. M.; Xu, F. Bioresour. Technol. 2018, 264, 238. |
| [9] | Zhou, N.; Yang, J.; Lu, X.; Xin, Z.; Xu, C. B.; He, Q. J. Anal. Appl. Pyrolysis 2022, 161, 105403. |
| [10] | Yang, J.; Shang, H.; Li, J.; Liao, Y. F.; Yang, C. Z. Mod. Chem. Ind. 2023, 43, 80. (in Chinese) |
| [10] | (杨捷, 商辉, 李军, 廖逸飞, 杨昌泽, 现代化工, 2023, 43, 80.) |
| [11] | Ma, Y. J.; Wang, W. L.; Han, S. Z.; Fu, Y. S.; Chen, Y. T.; Huang, J. L.; Quan, J. W.; Zhang, J. Y. J. Shaanxi Univ. Sci. Technol. 2023, 41, 8. (in Chinese) |
| [11] | (马玉军, 王文亮, 韩思哲, 付祎帅, 陈育彤, 黄佳乐, 权靖雯, 张嘉怡, 陕西科技大学学报, 2023, 41, 8.) |
| [12] | Wang, W. L.; Wang, M.; Huang, J. L.; Li, X. P.; Cai, L. P.; Shi, S. Q.; Cui, Y.; Chen, L.; Ni, Y. H. J. Cleaner Prod. 2020, 257, 120596. |
| [13] | Zhang, J.; Shen, Y.; Zhu, L. Y.; Liu, H. R.; Zhou, Z. Y. Energy Environ. Prot. 2024, 38, 190. (in Chinese) |
| [13] | (张婧, 沈洋, 诸麟榆, 刘浩然, 周忠岳, 能源环境保护, 2024, 38, 190.) |
| [14] | Zhang, H. D.; Lan, X. Y.; Cheng, P. Acta Chim. Sinica 2023, 81, 100. (in Chinese) |
| [14] | (张红丹, 兰欣雨, 程鹏, 化学学报, 2023, 81, 100.) |
| [15] | Wang, W. L.; Ma, Z. H.; Zhao, X. J.; Liu, S. W.; Cai, L. P.; Shi, S. Q.; Ni, Y. H. ACS Sustainable Chem. Eng. 2020, 8, 16086. |
| [16] | Zhou, X. W.; Zhou, J.; Yu, Y. W.; Ma, J. Q.; Sun, X. N.; Hu, L. M. Nano 2017, 12, 38. |
| [17] | Ji, N.; Diao, X. Y.; Li, X. X.; Jia, Z. C.; Zhao, Y. J.; Lu, X. B.; Song, C. F.; Liu, Q. L.; Li, C. Z. Ind. Eng. Chem. Res. 2020, 59, 17287. |
| [18] | Diao, X. Y.; Ji, N. J. Energy Chem. 2023, 77, 601. |
| [19] | Liu, X. L.; Hou, X. L.; Zhang, Y. J.; Yuan, H.; Hong, X. L.; Liu, G. L. Ind. Eng. Chem. Res. 2020, 59, 15921. |
| [20] | Zavala, L. A.; Kumar, K.; Martin, V.; Maillard, F.; Mauge, F.; Portier, X.; Oliviero, L.; Dubau, L. ACS Catal. 2023, 13, 1221. |
| [21] | Yan, J.; Huang, Y.; Chen, C.; Liu, X. G.; Liu, H. Carbon 2019, 152, 545. |
| [22] | Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z.; Ammarah, K.; Gu, L.; Kang, Z.; Zhang, Y. J. Am. Chem. Soc. 2020, 142, 4298. |
| [23] | Zhao, Y. P.; Zuo, X. Q.; Guo, Y.; Huang, H.; Zhang, H.; Wang, T.; Wen, N. X.; Chen, H.; Cong, T. Z.; Muhammad, J.; Yang, X.; Wang, X. N.; Fan, Z.; Pan, L. J. Nano-Micro Lett. 2021, 13. |
| [24] | Wang, W. l.; Huang, J. L.; Fu, Y. S.; Jiang, W. K.; Chen, Y. T.; Ma, Y. J.; Han, S. Z. Appl. Catal. B-Environ. 2023, 333, 122787. |
| [25] | Wang, W. L.; Wang, X. B.; Ma, Z. H.; Duan, C.; Liu, S. W.; Yu, H. L.; Li, X. P.; Cai, L. P.; Shi, S. Q.; Ni, Y. H. FUEL 2021, 285, 119211. |
| [26] | Jiang, S. N.; Ji, N.; Diao, X. Y.; Li, H. Y.; Rong, Y.; Lei, Y. X.; Yu, Z. H. ChemSusChem 2021, 14, 4377. |
| [27] | Xue, S.; Luo, Z. Y.; Zhou, Q. G.; Sun, H. R.; Du, L. W. Bioresour. Technol. 2021, 337, 125396. |
| [28] | Xue, X. F.; Zhang, C. S.; Xia, D.; Wang, Y. G.; Liang, J.; Sun, Y. F. Chem. Eng. J. 2022, 431, 134251. |
| [29] | Kloekhorst, A.; Shen, Y.; Yie, Y.; Fang, M.; Heeres, H. J. Biomass Bioenerg. 2015, 80, 147. |
| [30] | Jie, X. Y.; Li, W. S.; Slocombe, D.; Gao, Y. G.; Banerjee, I.; Gonzalez-Cortes, S.; Yao, B. Z.; AlMegren, H.; Alshihri, S.; Dilworth, J.; Thomas, J.; Xiao, T.; Edwards, P. Nat. Catal. 2020, 3, 902. |
| [31] | Zhu, J. Y.; Yi, L. P.; Yang, Z. Z.; Li, X. G. Fuel 2021, 287, 119553. |
| [32] | Yang, H. M.; Han, T.; Shi, Z.; Sun, Y. J.; Jiang, J. C.; Sandstrom, L.; Jonsson, P. G.; Yang, W. H. Fuel Process. Technol. 2022, 227, 107103. |
| [33] | Zhang, S. P.; Wang, J. X.; Ye, L.; Li, S.; Su, Y. H.; Zhang, H. Y. Chem. Eng. J. 2023, 454, 140072. |
/
| 〈 |
|
〉 |