静电纺丝法制备聚偏二氟乙烯-六氟丙烯电解质膜用于电化学执行器
收稿日期: 2024-02-07
网络出版日期: 2024-05-29
基金资助
南京邮电大学自然科学基金(NY222157); 南京邮电大学自然科学基金(NY221085); 有机电子与信息显示国家重点实验室(GZR2022010008); 江苏省低维材料化学重点实验室开放课题(JSKC20022); 国家留学基金(202008320051); 国家基础科学中心(62288102)
Preparation of Polyvinylidene Fluoride-Hexafluoropropylene Electrolyte Membrane by Electrospinning Method for Electrochemical Actuators
Received date: 2024-02-07
Online published: 2024-05-29
Supported by
Natural Science Foundation of Nanjing University of Posts and Telecommunications(NY222157); Natural Science Foundation of Nanjing University of Posts and Telecommunications(NY221085); State Key Laboratory of Organic Electronics and Information Display(GZR2022010008); Key Laboratory of Low-dimensional Materials Chemistry of Jiangsu Province(JSKC20022); National Overseas Study Fund(202008320051); National Basic Science Center(62288102)
本研究采用静电纺丝法制备了两种具有不同纤维直径的聚偏二氟乙烯-六氟丙烯(PVDF-HFP)电解质薄膜用于电化学执行器. 相比于滴涂薄膜, 电纺薄膜具有出色的柔韧性和大量孔隙结构, 其中粗纤维薄膜(PVDF-HFP 22% (w))表现出更好的拉伸断裂应力(7.52 MPa)、拉伸断裂伸长率(235%)和器件面电容(39.8 mF•cm-2). 在±0.5 V, 0.1 Hz的低驱动电压下, 粗纤维薄膜制备的电化学执行器的驱动位移为9.6 mm, 相比于细纤维执行器的6.5 mm和滴涂薄膜执行器的2.6 mm分别提升了1.48倍和3.69倍. 当电压升高到±2 V, 0.1 Hz时, 粗纤维薄膜执行器驱动位移为24.3 mm, 分别是细纤维执行器的1.19倍和滴涂样品的1.46倍. 该工作为制备大驱动位移电化学执行器提供了新的思路与方法.
关键词: 静电纺丝; 聚偏二氟乙烯-六氟丙烯; 电解质膜; 电化学执行器; 纤维直径
汪莎莎 , 孟鹏辉 , 李阳 , 邓慧婵 , 郭志翔 , 刘一任 , 石乃恩 , 魏颖 , 解令海 . 静电纺丝法制备聚偏二氟乙烯-六氟丙烯电解质膜用于电化学执行器[J]. 化学学报, 2024 , 82(6) : 570 -576 . DOI: 10.6023/A24020049
The microstructure of the electrolyte layer in electrochemical actuators significantly influences ion storage and transport, mechanical properties, and the final actuator deformation performance. In this study, two types of polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) electrolyte films with varying fiber diameters were prepared by electrospinning for electrochemical actuators. We controlled the diameters of the fibers by adjusting the concentrations of the polymer solution, while the film is carefully controlled to a consistent size in length, width, and thickness. Subsequently, the fiber film was immersed in the ionic liquid to achieve excellent electrolyte film performance. A poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) electrode thin film was prepared using a drop coating method. Finally, an electrochemical actuator was prepared by hot pressing the electrode and electrolyte films. Compared with the drop-coated electrolyte film, the electrospun counterparts exhibit an excellent flexibility and a porous structure. Among them, the film with a larger fiber diameter (PVDF-HFP 22% (w)) reveals better tensile stress (7.52 MPa), tensile strain (235%), porosity (74%) and surface capacitance (39.8 mF•cm-2), and its tip displacement is 9.6 mm at ±0.5 V and 0.1 Hz, which is 1.48 times that of the smaller fiber diameter sample (PVDF-HFP 16% (w)) and 3.69 times that of the drop-coated sample, respectively. When at ±2 V and 0.1 Hz, the displacement is as high as 24.3 mm, which is 1.19 times that of the smaller fiber diameter sample (PVDF-HFP 16% (w)) and 1.46 times that of the drop-coated sample, respectively. Under the driving voltage of ±0.5 V and 0.1 Hz, after 10000 cycles, the driving displacement of PVDF-HFP 22% (w) electrochemical actuator can still reach 98% compared with the initial state. By improving the microstructures of electrolyte films through electrospinning, we successfully realized the preparation of high-performance electrochemical actuators, which provides a new idea for the development of soft robots in the future.
[1] | Mahato, M.; Tabassian, R.; Nguyen, V. H.; Oh, S.; Nam, S.; Hwang, W.-J.; Oh, I.-K. Nat. Commun. 2020, 11, 5358. |
[2] | Garai, M.; Mahato, M.; Nam, S.; Kim, E.; Seo, D.; Lee, Y.; Nguyen, V. H.; Oh, S.; Sambyal, P.; Yoo, H.; Taseer, A. K.; Syed, S. A.; Han, H.; Ahn, C. W.; Kim, J.; Oh, I.-K. Adv. Funct. Mater. 2023, 33, 2212252. |
[3] | Mahato, M.; Garai, M.; Nguyen, V.-H.; Oh, S.; Nam, S.; Zeng, X.-R.; Yoo, H.; Tabassian, R.; Oh, I.-K. Sci. Adv. 2023, 9, eadk9752. |
[4] | Nguyen, V. H.; Oh, S.; Mahato, M.; Tabassian, R.; Yoo, H.; Lee, S.-G.; Garai, M.; Kim, K. J.; Oh, I.-K. Nat. Commun. 2024, 15, 435. |
[5] | Mahato, M.; Hwang, W.-J.; Tabassian, R.; Oh, S.; Nguyen, V. H.; Nam, S.; Kim, J.-S.; Yoo, H.; Taseer, A. K.; Lee, M.-J.; Zhang, H.-P.; Song, T. E.; Oh, I.-K. Adv. Mater. 2022, 34, 2203613. |
[6] | Zhang, D.-J.; Liu, J.; Chen, B.; Wang, J.-X.; Jiang, L. Acta Chim. Sinica 2018, 76, 425. (in Chinese) |
[6] | (张大杰, 刘捷, 陈波, 王京霞, 江雷, 化学学报, 2018, 76, 425.) |
[7] | Wang, G.-G.; Zhang, J.-Z.; Liu, S.-R.; Wang, X.-H.; Liu, X.-Y.; Chen, J.-Z. Acta Polym. Sin. 2021, 52, 124. (in Chinese) |
[7] | (王格格, 张居中, 刘水任, 王向红, 刘旭影, 陈金周, 高分子学报, 2021, 52, 124.) |
[8] | Wang, S.-S.; Li, Y.-A.; Deng, H.-C.; Guo, Z.-X.; Kan, Y.-H.; Cao, H.-T.; Xie, L.-H. Chin. Sci. Bull. 2024, 69, 578. (in Chinese) |
[8] | (汪莎莎, 李延昂, 邓慧婵, 郭志翔, 阚玉和, 曹洪涛, 解令海, 科学通报, 2024, 69, 578.) |
[9] | Yan, Y.-S.; Santaniello, T.; Bettini, L. G.; Minnai, C.; Bellacicca, A.; Porotti, R.; Denti, I.; Faraone, G.; Merlini, M.; Lenardi, C.; Milani, P. Adv. Mater. 2017, 29, 1606109. |
[10] | Yu, F.; Ciou, J.-H.; Chen, S.-H.; Poh, W. C.; Chen, J.; Chen, J.-T.; Haruethai, K.; Lv, J.; Gao, D.; Lee, P. S. Nat. Commun. 2022, 13, 390. |
[11] | Kim, O.; Kim, H.; Choi, U. H.; Park, M. J. Nat. Commun. 2016, 7, 13576. |
[12] | Pang, D.; Alhabeb, M.; Mu, X.-P.; Dall'Agnese, Y.; Gogotsi, Y.; Gao, Y. Nano Lett. 2019, 19, 7443. |
[13] | Wu, G.; Wu, X.-J.; Xu, Y.-J.; Cheng, H.-Y.; Meng, J.-K.; Yu, Q.; Shi, X.; Zhang, K.; Chen, W.; Chen, S. Adv. Mater. 2019, 31, 1806492. |
[14] | Tabassian, R.; Kim, J.; Nguyen, V. H.; Kotal, M.; Oh, I.-K. Adv. Funct. Mater. 2018, 28, 1705714. |
[15] | Shi, Y.-X.; Wu, Y.; Wang, S.-Q.; Zhao, Y.-Y.; Li, T.; Yang, X.-Q.; Zhang, T. J. Am. Chem. Soc. 2021, 143, 4017. |
[16] | Liu, C.-Y.; Cao, S.-Y.; Yoshio, M. Adv. Funct. Mater. 2023, 2300538. |
[17] | Manzoor, M. T.; Nguyen, V.-H.; Umrao, S.; Kim, J.-H.; Tabassian, R.; Kim, J.-E.; Oh, I.-K. Adv. Funct. Mater. 2019, 29, 1905454. |
[18] | Nguyen, V. H.; Kim, J.; Tabassian, R.; Kotal, M.; Jun, K.; Oh, J.-H.; Son, J.-M.; Manzoor, M. T.; Kim, K.-J.; Oh, I.-K. Adv. Sci. 2019, 6, 1801196. |
[19] | Raza, U.; Oh, S.; Tabassian, R.; Mahato, M.; Nguyen, V. H.; Oh, I.-K. Sens. Actuators B Chem. 2022, 352, 131006. |
[20] | Wang, F.; Huang, D.-L.; Li, Q.-C.; Wu, Y.-J.; Yan, B.; Wu, Z.-Y.; Park, S. Compos. Sci. Technol. 2023, 231, 109845. |
[21] | Wang, F.; Kong, Y.; Shen, F.-F.; Wang, Y.-F.; Wang, D.-H.; Li, Q.-C. Compos. Part B Eng. 2022, 228, 109436. |
[22] | Yang, G.; Li, X.-L.; He, Y.; Ma, J.-K.; Ni, G.-L.; Zhou, S.-B. Prog. Polym. Sci. 2018, 81, 80. |
[23] | Ma, S.-Q.; Zhang, Y.-P.; Liang, Y.-H.; Ren, L.; Tian, W.-J.; Ren, L.-Q. Adv. Funct. Mater. 2020, 30, 1908508. |
[24] | Kim, S.; Kim, S.; Ho, D.-H.; Roe, D.-G.; Choi, Y.-J.; Kim, M.-J.; Kim, U.-J.; Le, M.-L.; Kim, J.; Kim, S.-H.; Cho, J.-H. Sci. Adv. 2022, 8, eabo3326. |
/
〈 |
|
〉 |