综述

工况条件下富氢气体中CO选择性氧化反应的耐受性调控及作用机制研究

  • 王力鹏 ,
  • 曹道帆 ,
  • 刘雪 ,
  • 李超 ,
  • 刘科
展开
  • 南方科技大学 理学院化学系 深圳 518055

王力鹏, 南方科技大学理学院化学系博士研究生, 化学专业; 硕士毕业于华侨大学化工学院环境科学与工程专业, 研究方向大气污染控制工程. 目前已以第一作者分别在J. Catal., Appl. Surf. Sci., Chem. Comm.期刊发表环境催化类研究论文, 当前课题为富氢气体中CO选择性氧化催化剂研发.

刘科, 博士生导师, 澳大利亚国家工程院外籍院士, 南方科技大学创新创业学院院长, 南方科技大学理学院讲席教授, 中国与全球化智库常务理事, 国家海外高层次人才联谊会副会长, 美国化学工程师协会(AIChE)会士, 国际氢能协会(IHA)理事. 主要研究方向为洁净煤技术、新型催化剂的设计合成及其应用、土壤修复与改良、系统仿真模拟与集成.

收稿日期: 2024-02-20

  网络出版日期: 2024-05-31

基金资助

深圳市科技计划项目, 深圳市科技创新委员会(KQTD20180411143418361); 深圳燃气-南科大联合能源实验室; 广东省催化化学重点实验室-南方科技大学(2020B121201002); 国家自然科学基金(U22B20149)

Effect of Realistic Operating Considerations on Preferential Oxidation of CO and Regulatory Strategies: A Review and Perspectives

  • Lipeng Wang ,
  • Daofan Cao ,
  • Xue Liu ,
  • Chao Li ,
  • Ke Liu
Expand
  • Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
*E-mail: ; Tel.: 0755-88010097

Received date: 2024-02-20

  Online published: 2024-05-31

Supported by

Shenzhen Science and Technology Program, Shenzhen Science and Technology Innovation Committee(KQTD20180411143418361); Shenzhen Gas & SUSTech Joint Energy Lab, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Catalysis(2020B121201002); National Natural Science Foundation of China(U22B20149)

摘要

一氧化碳选择性氧化(CO-PROX)是纯化富氢气体耦合燃料电池发电的关键步骤, CO-PROX能够通过催化作用优先氧化脱除重整气中的CO杂质, 将CO浓度降低至0.001%或0.010%以下, 为燃料电池系统供给高纯H2提供了技术选择. 在多数的文献研究工作中, 研究者一般采用模拟的重整气组分来评估新型催化剂材料的活性, 设置出理想的CO-PROX反应气氛(惰性气体作为配气代替重整尾气中的CO2和H2O, 模拟较低的H2比例等), 使研究的科学问题更加集中具体, 然而少有研究综合考虑实际工况因素的影响、反应器设计、传质传热、反应器单元衔接等问题. 本研究综述侧重考察调研了H2O和CO2对CO-PROX反应的作用, 以及实际工况下可能存在的其他因素的影响, 概括分析了上述因素对CO-PROX反应的抑制/促进作用, 同时归纳整理了提升耐受性的可行调控策略, 为CO-PROX领域的基础研究和工程应用衔接提供重要参考依据.

本文引用格式

王力鹏 , 曹道帆 , 刘雪 , 李超 , 刘科 . 工况条件下富氢气体中CO选择性氧化反应的耐受性调控及作用机制研究[J]. 化学学报, 2024 , 82(7) : 819 -832 . DOI: 10.6023/A24020056

Abstract

In the realm of hydrogen production for fuel cell applications, H2 must be refined to ultra-high purity levels essential for the functionality of fuel cells. Various methods are available for removing trace contaminants from effluent gas streams, falling into the broad categories of adsorption, membranes, scrubbers, and selective reactions. Preferential oxidation of carbon monoxide (CO-PROX) plays a pivotal role in ensuring the purity of hydrogen-rich gases. This catalytic process selectively removes CO impurities, typically requiring reduction to concentrations below 0.001%, thereby enabling the supply of high-purity H2 to fuel cells. While much existing research utilizes idealized conditions and simulated reformate gas compositions for evaluating novel CO-PROX catalyst materials, it tends to somewhat overlook the real operational factors (water vapor and carbon dioxide), reactor design, and mass/heat transfer. Unlike the singular improvement of catalytic performance under ideal experimental conditions, the practical application of CO-PROX necessitates consideration of unavoidable factors, such as the upstream hydrogen source and the downstream anode tolerance of fuel cell. It is also imperative to design an optimized CO-PROX reactor that takes into account realistic operating conditions. This comprehensive review delves into the multifaceted aspects of CO-PROX, mainly focusing on the impact of water vapor (H2O), carbon dioxide (CO2), and other practical operational considerations. The analysis encompasses their inhibitory and promotional effects on CO-PROX reactions. In addition, we summarize and suggest possible strategies for enhancing CO-PROX tolerance in this work. The catalytic performance can be augmented by modulating the reaction temperature and the feed atmosphere, and catalyst could be activated through pre-treatment with specific atmosphere. High-tolerability CO-PROX catalysts can be developed by meticulously selecting appropriate supports and active-sites. Furthermore, several studies have successfully elevated the reaction performance by integrating insights from other research disciplines. Thereby, this review serves as a valuable reference bridging fundamental research with practical engineering applications within the CO-PROX domain.

参考文献

[1]
Li J.; Wu C.; Cao D.; Hu S.; Weng L.; Liu K. Engineering 2023, 29, 27.
[2]
Iulianelli A.; Ribeirinha P.; Mendes A.; Basile A. Renewable Sustainable Energy Rev. 2014, 29, 355.
[3]
Herdem M. S.; Sinaki M. Y.; Farhad S.; Hamdullahpur F. Int. J. Energy Res. 2019, 43, 5076.
[4]
Mei D.; Qiu X.; Liu H.; Wu Q.; Yu S.; Xu L.; Zuo T.; Wang Y. Int. J. Hydrogen Energy 2022, 47, 35757.
[5]
Baschuk J. J.; Li X. Int. J. Energy Res. 2001, 25, 695.
[6]
Bion N.; Epron F.; Moreno M.; Mari?o F.; Duprez D. Top. Catal. 2008, 51, 76.
[7]
Alayoglu S.; Nilekar A. U.; Mavrikakis M.; Eichhorn B. Nat. Mater. 2008, 7, 333.
[8]
Lin J.; Wang X.; Zhang T. Chinese J. Catal. 2016, 37, 1805.
[9]
Liu K.; Wang A.; Zhang T. ACS Catal. 2012, 2, 1165.
[10]
Cao L.; Liu W.; Luo Q.; Yin R.; Wang B.; Weissenrieder J.; Soldemo M.; Yan H.; Lin Y.; Sun Z.; Ma C.; Zhang W.; Chen S.; Wang H.; Guan Q.; Yao T.; Wei S.; Yang J.; Lu J. Nature 2019, 565, 631.
[11]
?im?ek E.; ?zkara S.; Aksoylu A. E.; ?nsan Z. I. Appl. Catal., A 2007, 316, 169.
[12]
Gamarra D.; Martínez-Arias A. J. Catal. 2009, 263, 189.
[13]
Quinet E.; Morfin F.; Diehl F.; Avenier P.; Caps V. R.; Rousset J.-L. Appl. Catal., B 2008, 80, 195.
[14]
Mari?o F.; Descorme C.; Duprez D. Appl. Catal., B 2005, 58, 175.
[15]
Hong B.; Liang J. X.; Sun X.; Tian M.; Huang F.; Zheng Y.; Lin J.; Li L.; Zhou Y.; Wang X. ACS Catal. 2021, 11, 5709.
[16]
Cao S.; Zhao Y.; Lee S.; Yang S.; Liu J.; Giannakakis G.; Ouyang M.; Wang D.; Sykes E. C. H.; Flytzani-Stephanopoulos M. Sci. Adv. 2020, 6, eaba3809.
[17]
Tanaka K. I.; He H. Catal. Today 2013, 201, 2.
[18]
Chin S. Y.; Alexeev O. S.; Amiridis M. D. Appl. Catal., A 2005, 286, 157.
[19]
Laguna O. H.; Domínguez M. I.; Centeno M. A.; Odriozola J. A. Chem. Eng. J. 2016, 302, 650.
[20]
Mari?o F.; Descorme C.; Duprez D. Appl. Catal., B 2004, 54, 59.
[21]
Levalley T. L.; Richard A. R.; Fan M. Int. J. Hydrogen Energy 2014, 39, 16983.
[22]
Li H.; Dong H.; Yu X.; Wang Z. Fine Chem. 2011, 28, 359 (in Chinese).
[22]
(李宏亮, 董红微, 于新海, 王正东, 精细化工, 2011, 28, 359.)
[23]
Shai Y.; Wu Y. Ind. Catal. 2010, 18, 40 (in Chinese).
[23]
(邵一凡, 伍艳辉, 工业催化, 2010, 18, 40.)
[24]
Laguna O. H.; Domínguez M. I.; Oraá S.; Navajas A.; Arzamendi G.; Gandía L. M.; Centeno M. A.; Montes M.; Odriozola J. A. Catal. Today 2013, 203, 182.
[25]
Kim D. H.; Cha J. E. Catal. Lett. 2003, 86, 107.
[26]
Avgouropoulos G.; Ioannides T. Appl. Catal., A 2003, 244, 155.
[27]
Mari?o F.; Sch?nbrod B.; Moreno M.; Jobbágy M.; Baronetti G.; Laborde M. Catal. Today 2008, 133-135, 735.
[28]
Cox D. F.; Schulz K. H. Surf. Sci. 1991, 249, 138.
[29]
Lin Q.; Li J.; Chen Q.; Li T.; Liu Y.; Li S. Mod. Chem. Ind. 2023, 43, 147 (in Chinese).
[29]
(林倩倩, 李杰, 陈秋月, 李涛, 刘运权, 李水荣, 现代化工, 2023, 43, 147.)
[30]
Cao F.; Xiao Y.; Zhang Z.; Li J.; Xia Z.; Hu X.; Ma Y.; Qu Y. J. Catal. 2022, 414, 25.
[31]
Chen L.; Liu F.; Li X.; Tao Q.; Huang Z.; Zuo Q.; Chen Y.; Li T.; Fu M.; Ye D. J. Colloid Interface Sci. 2023, 638, 109.
[32]
Zhang X.; Su L.; Kong Y.; Ma D.; Ran Y.; Peng S.; Wang L.; Wang Y. J. Phys. Chem. Solids 2020, 147, 109651.
[33]
Qi L.; Yu Q.; Dai Y.; Tang C.; Liu L.; Zhang H.; Gao F.; Dong L.; Chen Y. Appl. Catal., B 2012, 119-120, 308.
[34]
Sirichaiprasert K.; Pongstabodee S.; Luengnaruemitchai A. J. Chin. Inst. Chem. Eng. 2008, 39, 597.
[35]
Liu Y.; Fu Q.; Stephanopoulos M. F. Catal. Today 2004, 93-95, 241.
[36]
Meng M.; Liu Y.; Sun Z.; Zhang L.; Wang X. Int. J. Hydrogen Energy 2012, 37, 14133.
[37]
Gómez-Cortés A.; Márquez Y.; Arenas-Alatorre J.; Díaz G. Catal. Today 2008, 133-135, 743.
[38]
Wang J.; Pu H.; Wan G.; Chen K.; Lu J.; Lei Y.; Zhong L.; He S.; Han C.; Luo Y. Int. J. Hydrogen Energy 2017, 42, 21955.
[39]
Chuang K. H.; Shih K.; Lu C. Y.; Wey M. Y. Int. J. Hydrogen Energy 2013, 38, 100.
[40]
Moretti E.; Storaro L.; Talon A.; Moreno-Tost R.; Rodríguez-Castellón E.; Jiménez-López A.; Lenarda M. Catal. Lett. 2009, 129, 323.
[41]
Arango-Díaz A.; Cecilia J. A.; Moretti E.; Talon A.; Nú?ez P.; Marrero-Jerez J.; Jiménez-Jiménez J.; Jiménez-López A.; Rodríguez-Castellón E. Int. J. Hydrogen Energy 2014, 39, 4102.
[42]
Gunugunuri K.; Smirniotis P. Water Gas Shift Reaction, Research Developments and Applications, Elsevier, Amsterdam Netherlands, 2015.
[43]
Hernández W. Y.; Centeno M. A.; Ivanova S.; Eloy P.; Gaigneaux E. M.; Odriozola J. A. Appl. Catal., B 2012, 123-124, 27.
[44]
Arango-Díaz A.; Cecilia J. A.; Marrero-Jerez J.; Nú?ez P.; Jiménez-Jiménez J.; Rodríguez-Castellón E. Ceram. Int. 2016, 42, 7462.
[45]
Wu Z.; Zhu H.; Qin Z.; Wang H.; Huang L.; Wang J. Appl. Catal., B 2010, 98, 204.
[46]
Davó-Qui?onero A.; Lozano-Castelló D.; Bueno-López A. Appl. Catal., B 2017, 217, 459.
[47]
Ilieva L.; Pantaleo G.; Ivanov I.; Zanella R.; Sobczak J. W.; Lisowski W.; Venezia A. M.; Andreeva D. Catal. Today 2011, 175, 411.
[48]
Monyanon S.; Pongstabodee S.; Luengnaruemitchai A. J. Chin. Inst. Chem. Eng. 2007, 38, 435.
[49]
Monyanon S.; Pongstabodee S.; Luengnaruemitchai A. J. Power Sources 2006, 163, 547.
[50]
Avgouropoulos G.; Papavasiliou J.; Tabakova T.; Idakiev V.; Ioannides T. Chem. Eng. J. 2006, 124, 41.
[51]
Chagas C. A.; De Souza E. F.; De Carvalho M. C. N. A.; Martins R. L.; Schmal M. Appl. Catal., A 2016, 519, 139.
[52]
Dasireddy V. D. B. C.; Likozar B. Renewable Energy 2022, 182, 713.
[53]
Deng W.; De Jesus J.; Saltsburg H.; Flytzani-Stephanopoulos M. Appl. Catal., A 2005, 291, 126.
[54]
Guo Q.; Liu Y. React. Kinet. Catal. Lett. 2007, 92, 19.
[55]
Luengnaruemitchai A.; Srihamat K.; Pojanavaraphan C.; Wanchanthuek R. Int. J. Hydrogen Energy 2015, 40, 13443.
[56]
Nyathi T. M.; Fadlalla M. I.; Fischer N.; York A. P. E.; Olivier E. J.; Gibson E. K.; Wells P. P.; Claeys M. Appl. Catal., B 2021, 297, 120450.
[57]
Luengnaruemitchai A.; Naknam P.; Wongkasemjit S. Ind. Eng. Chem. Res. 2008, 47, 8160.
[58]
Naknam P.; Luengnaruemitchai A.; Wongkasemjit S.; Osuwan S. J. Power Sources 2007, 165, 353.
[59]
Naknam P.; Luengnaruemitchai A.; Wongkasemjit S. Energy Fuels 2009, 23, 5084.
[60]
Schubert M. M.; Venugopal A.; Kahlich M. J.; Plzak V.; Behm R. J. J. Catal. 2004, 222, 32.
[61]
Shodiya T.; Schmidt O.; Peng W.; Hotz N. J. Catal. 2013, 300, 63.
[62]
Liu C.; Shi P. J. Chem. Eng. Chin. Univ. 2004, 18, 606 (in Chinese).
[62]
(刘春涛, 史鹏飞, 高校化学工程学报, 2004, 18, 606.)
[63]
Liu C.; Shi P.; Zhang J. Nat. Gas Chem. Ind. 2004, 29, 14 (in Chinese).
[63]
(刘春涛, 史鹏飞, 张菊香, 天然气化工, 2004, 29, 14.)
[64]
Landon P.; Ferguson J.; Solsona B. E.; Garcia T.; Al-Sayari S.; Carley A. F.; Herzing A.; Kiely C. J.; Makkee M.; Moulijn J. A.; Overweg A.; Golunski S. E.; Hutchings G. J. J. Mater. 2006, 16, 199.
[65]
Koo K. Y.; Jung U. H.; Yoon W. L. Int. J. Hydrogen Energy 2014, 39, 5696.
[66]
Manasilp A.; Gulari E. Appl. Catal., B 2002, 37, 17.
[67]
Calla J. T.; Bore M. T.; Datye A. K.; Davis R. J. J. Catal. 2006, 238, 458.
[68]
Wang L.; Huang Z.; Guo S.; Wu X.; Shen H.; Zhao H.; Jing G. J. Catal. 2022, 406, 107.
[69]
Han Y. F.; Kinne M.; Behm R. J. Appl. Catal., B 2004, 52, 123.
[70]
Rah I. J.; Kim T. W.; Kim J.; Lee D.; Park E. D. Catal. Today 2020, 352, 148.
[71]
Jardim E. O.; Rico-Francés S.; Coloma F.; Anderson J. A.; Ramos-Fernandez E. V.; Silvestre-Albero J.; Sepúlveda-Escribano A. Appl. Catal., A 2015, 492, 201.
[72]
Lee H. C.; Kim D. H. Catal. Today 2008, 132, 109.
[73]
Hong F.; Wang S.; Zhang J.; Zhang B.; Sun K.; Huang J.; Qiao B.; Ta N.; Li M.; Li D.; Huang W.; Haruta M.; Li C. Chem Catalysis 2021, 1, 456.
[74]
Lei M.; Hong B.; Yan L.; Chen R.; Huang F.; Zheng Y. Int. J. Hydrogen Energy 2022, 47, 24374.
[75]
Tanaka K. I.; Shou M.; He H.; Shi X. Catal. Lett. 2006, 110, 185.
[76]
Shi X.; Tanaka K. I.; He H.; Shou M.; Xu W.; Zhang X. Catal. Lett. 2008, 120, 210.
[77]
Tanaka K. I.; Shou M.; He H.; Shi X.; Zhang X. J. Phys. Chem. C 2009, 113, 12427.
[78]
Tanaka K. I.; He H.; Yuan Y. RSC Adv. 2015, 5, 949.
[79]
Tanaka K. I.; Shou M.; Yuan Y. J. Phys. Chem. C 2010, 114, 16917.
[80]
Yi G.; Yang H.; Li B.; Lin H.; Tanaka K. I.; Yuan Y. Catal. Today 2010, 157, 83.
[81]
Avgouropoulos G.; Papavasiliou J.; Ioannides T. Catal. Commun. 2008, 9, 1656.
[82]
Jiao T.; Xu X.; Zhang L.; Weng Y.; Weng Y.; Gao Z. Acta Chim. Sinica 2021, 79, 513 (in Chinese).
[82]
(焦桐, 许雪莲, 张磊, 翁幼云, 翁玉冰, 高志贤, 化学学报, 2021, 79, 513.)
[83]
Caglayan B. S.; Soykal I. I.; Aksoylu A. E. Appl. Catal., B 2011, 106, 540.
[84]
Wakita H.; Kani Y.; Ukai K.; Tomizawa T.; Takeguchi T.; Ueda W. Appl. Catal., A 2005, 283, 53.
[85]
Gasteiger H. A.; Kocha S. S.; Sompalli B.; Wagner F. T. Appl. Catal., B 2005, 56, 9.
[86]
Zhang X.; Zhang X.; Song L.; Hou F.; Yang Y.; Wang Y.; Liu N. Int. J. Hydrogen Energy 2018, 43, 18279.
[87]
Watanabe M.; Uchida H.; Ohkubo K.; Igarashi H. Appl. Catal., B 2003, 46, 595.
[88]
Yang H.; Wang C.; Li B.; Lin H.; Tanaka K. I.; Yuan Y. Appl. Catal., A 2011, 402, 168.
[89]
Xu W.; Wu Y.; Du X.; Xiao F.; Liu Z. Ind. Catal. 2012, 20, 50 (in Chinese).
[89]
(徐卫, 吴熠, 杜霞茹, 肖菲, 刘振峰, 工业催化, 2012, 20, 50.)
[90]
Chen X.; Chen Z.; Lin W. Nat. Gas Chem. Ind. 2009, 34, 18 (in Chinese).
[90]
(陈喜蓉, 陈早明, 林维明, 天然气化工(C1化学与化工), 2009, 34, 18.)
[91]
Wu Z.; Zhu H.; Qin Z.; Wang H.; Ding J.; Huang L.; Wang J. Fuel 2013, 104, 41.
[92]
Son I. H.; Shamsuzzoha M.; Lane A. M. J. Catal. 2002, 210, 460.
[93]
Tada M.; Bal R.; Mu X.; Coquet R.; Namba S.; Iwasawa Y. Chem. Commun. 2007, 44, 4689.
[94]
Razeghi A.; Khodadadi A.; Ziaei-Azad H.; Mortazavi Y. Chem. Eng. J. 2010, 164, 214.
[95]
Kotobuki M.; Watanabe A.; Uchida H.; Yamashita H.; Watanabe M. Appl. Catal., A 2006, 307, 275.
[96]
Maeda N.; Matsushima T.; Kotobuki M.; Miyao T.; Uchida H.; Yamashita H.; Watanabe M. Appl. Catal., A 2009, 370, 50.
[97]
Uysal G.; Akin A. N.; ?nsan Z. I.; Yildirim R. Catal. Lett. 2006, 108, 193.
[98]
Ishida Y.; Ebashi T.; Ito S. I.; Kubota T.; Kunimori K.; Tomishige K. Chem. Commun. 2009, 35, 5308.
[99]
Chen C.-H.; Suib S. L. J. Chin. Chem. Soc. 2012, 59, 465.
[100]
Davó-Qui?onero A.; López-Rodríguez S.; Bailón-García E.; Lozano-Castelló D.; Bueno-López A. ACS Sustainable Chem. Eng. 2021, 9, 6329.
[101]
Dasireddy V. D. B. C.; Valand J.; Likozar B. Renewable Energy 2018, 116, 75.
[102]
Gao Y.; Xie K.; Mi S.; Liu N.; Wang W.; Huang W. Int. J. Hydrogen Energy 2013, 38, 16665.
[103]
Lu S.; Zhang C.; Liu Y. Int. J. Hydrogen Energy 2011, 36, 1939.
[104]
Gao M.; Jiang N.; Zhao Y.; Xu C.; Su H.; Zeng S. J. Rare Earths 2016, 34, 55.
[105]
Saavedra J.; Whittaker T.; Chen Z.; Pursell C. J.; Rioux R. M.; Chandler B. D. Nat. Chem. 2016, 8, 584.
[106]
Boukha Z.; González-Velasco J. R.; Gutiérrez-Ortiz M. A. Appl. Catal., B 2021, 292, 120142.
[107]
Boukha Z.; González-Velasco J. R.; Gutiérrez-Ortiz M. A. Appl. Catal., B 2022, 312, 121384.
[108]
Guan H.; Lin J.; Li L.; Wang X.; Zhang T. Appl. Catal., B 2016, 184, 299.
[109]
Liu W.; Sheng H.; Zhu L.; Zhang Y.; Liu W.; Zhao Y.; Li Q.; Peng Y.; Wang Z. J. Colloid. Interface Sci. 2022, 627, 53.
[110]
Zhang Z.; Chen K.; Lu J.; Zou Q.; Zhao Y.; Luo Y.; He D.; Li R. Int. J. Hydrogen Energy 2021, 46, 22508.
[111]
Cecilia J. A.; Arango-Díaz A.; Rico-Pérez V.; Bueno-López A.; Rodríguez-Castellón E. Catal. Today 2015, 253, 115.
[112]
Lu J.; Wang J.; Zou Q.; He D.; Zhang L.; Xu Z.; He S.; Luo Y. ACS Catal. 2019, 9, 2177.
[113]
Landi G.; Di Benedetto A.; Colussi S.; Barbato P. S.; Lisi L. Int. J. Hydrogen Energy 2016, 41, 7332.
[114]
Manzoli M.; Avgouropoulos G.; Tabakova T.; Papavasiliou J.; Ioannides T.; Boccuzzi F. Catal. Today 2008, 138, 239.
[115]
Kim Y. H.; Park E. D.; Lee H. C.; Lee D. Appl. Catal. A-Gen. 2009, 366, 363.
[116]
Lu X.; Liu Z.; Ma S.; Bai X. J. Fuel Chem. Technol. 2016, 44, 870 (in Chinese).
[116]
(卢小林, 刘子魁, 马素芳, 白雪, 燃料化学学报, 2016, 44, 870.)
[117]
Chen X.; Delgado J. J.; Gatica J. M.; Zerrad S.; Cies J. M.; Bernal S. J. Catal. 2013, 299, 272.
[118]
Son I. H.; Lane A. M. Catal. Lett. 2001, 76, 151.
[119]
Yan J.; Ma J.; Cao P.; Li P. Catal. Lett. 2004, 93, 55.
[120]
Shi L.; Zheng D.; Wang S. Chem. Ind. Eng. Prog. 2011, 30, 1956 (in Chinese).
[120]
(士丽敏, 郑德山, 王素敏, 化工进展, 2011, 30, 1956.)
[121]
Wang Y.; Li J.; Song R.; Gao W.; Lv S.; Pan L. Mod. Chem. Ind. 2023, 43, 71 (in Chinese).
[121]
(王雅琪, 李金晓, 宋仁升, 高伟, 吕爽, 潘立卫, 现代化工, 2023, 43, 71.)
[122]
Zhou G.; Jiang Y.; Qiu F. J. Fuel Chem. Technol. 2011, 39, 293 (in Chinese).
[122]
(周桂林, 蒋毅, 邱发礼, 燃料化学学报, 2011, 39, 293.)
[123]
Liu H.; Li D.; Guo J.; Li Y.; Liu A.; Bai Y.; He D. Nano Res. 2023, 16, 4399.
[124]
Shan Y.; Guo W.; Liu S. Chem. Eng. Oil Gas 2011, 40, 7 (in Chinese).
[124]
(单译, 郭瓦力, 刘思乐, 石油与天然气化工, 2011, 40, 7.)
[125]
Cruz A. R. M.; Vieira L. H.; Assaf E. M.; Gomes J. F.; Assaf J. M. Int. J. Hydrogen Energy 2023, 48, 24961.
[126]
An J.; Niu T.; Liu Y. Chem. Ind. Eng. 2016, 33, 7 (in Chinese).
[126]
(安继民, 钮挺, 刘源, 化学工业与工程, 2016, 33, 7.)
[127]
Ko E. Y.; Park E. D.; Seo K. W.; Lee H. C.; Lee D.; Kim S. Catal. Lett. 2006, 110, 275.
[128]
Ko E. Y.; Park E. D.; Seo K. W.; Lee H. C.; Lee D.; Kim S. Catal. Today 2006, 116, 377.
[129]
Chen X.; Chen Z.; Liu X.; Lin W. Ind. Catal. 2015, 23, 682 (in Chinese).
[129]
(陈喜蓉, 陈早明, 刘小军, 林维明, 工业催化, 2015, 23, 682.)
[130]
Barrai F.; Castaldi M. J. Ind. Eng. Chem. Res. 2010, 49, 1577.
[131]
Pan L.; Wang S. Int. J. Hydrogen Energy 2006, 31, 447.
[132]
Park J.-J.; Shin Y.; Oh J.-H.; Chung C.-H.; Huh Y.-J.; Haam S. J. Ind. Eng. Chem. 2009, 15, 618.
[133]
Zhu F.; Zhang Y.; Gu X.; Chen C.; Jin W.; Ke X. Int. J. Hydrogen Energy 2016, 41, 13513.
[134]
Li H.; Yu X.; Tu S.-T.; Yan J.; Wang Z. Appl. Catal., A 2010, 387, 215.
[135]
Gómez L. E.; Sollier B. M.; Lacoste A. M.; Miró E. E.; Boix A. V. J. Environ. Chem. Eng. 2019, 7, 103376.
[136]
Maeda N.; Matsushima T.; Uchida H.; Yamashita H.; Watanabe M. Appl. Catal., A 2008, 341, 93.
[137]
Zeng S. H.; Liu Y.; Wang Y. Q. Catal. Lett. 2007, 117, 119.
[138]
Laguna O. H.; González Casta?o M.; Centeno M. A.; Odriozola J. A. Chem. Eng. J. 2015, 275, 45.
[139]
Dai W.; Zheng X.; Yang H.; Chen X.; Wang X.; Liu P.; Fu X. J. Power Sources 2009, 188, 507.
[140]
Omata K.; Kobayashi Y.; Yamada M. Catal. Today 2006, 117, 311.
[141]
Omata K.; Kobayashi Y.; Yamada M. Catal. Commun. 2007, 8, 1.
文章导航

/