核扩展萘二酰亚胺-插烯四硫富瓦烯衍生物的设计合成与性能研究
收稿日期: 2024-06-27
网络出版日期: 2024-07-22
基金资助
国家自然科学基金(22225506); 中国科学院战略性先导科技专项B类(XDB0520101); 上海市启明星计划(21QA1411100); 中国科学院青年创新促进会(2022252)
Design, Synthesis and Property Study of a π-Expanded Naphthalene Diimide-Vinylogous Tetrathiafulvalene Derivative
Received date: 2024-06-27
Online published: 2024-07-22
Supported by
National Natural Science Foundation of China(22225506); Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0520101); Shanghai Rising-Star Program(21QA1411100); Youth Innovation Promotion Association CAS(2022252)
与p-型有机场效应晶体管(OFET)相比, 目前n-型OFET仍面临器件性能低及稳定性差等问题. 利用萘二酰亚胺(NDI)核π-扩展策略, 设计合成了邻苯二硫酚取代的萘二酰亚胺-插烯四硫富瓦烯衍生物(BDTNDI-DTYA)2, 通过溶液旋涂成膜法制备了基于(BDTNDI-DTYA)2的底栅顶接触结构的OFET器件. 研究结果表明(BDTNDI-DTYA)2表现出n-型半导体特性, 其薄膜未经处理时器件的平均电子迁移率为0.04 cm2•V-1•s-1, 以热退火(160 ℃)和添加剂(薁)升华两种方式分别对(BDTNDI-DTYA)2的薄膜进行处理后, 薄膜器件的平均电子迁移率分别提升至1.00和0.98 cm2•V-1•s-1.研究表明OFET器件性能的显著提升均得益于薄膜结晶性的提高和形貌的改善. 设计合成了高性能的n-型有机半导体材料(BDTNDI-DTYA)2, 并以薁为调节剂对OFET的活性层结构形貌进行了有效调控, 为有机半导体材料的设计合成及其OFET器件性能的提升提供了新思路.
关键词: 萘二酰亚胺; n-型有机场效应晶体管; 电子迁移率; 结构-性能关系; 添加剂
何萌萌 , 张瑞 , 谢玉龙 , 葛从伍 , 高希珂 . 核扩展萘二酰亚胺-插烯四硫富瓦烯衍生物的设计合成与性能研究[J]. 化学学报, 2024 , 82(9) : 954 -961 . DOI: 10.6023/A24060204
Organic field-effect transistors (OFETs) is the basic unit of complementary logic circuit, however, the development of n-type OFETs lags behind of p-type ones due to the barrier of electron injection and the interference from oxygen and water, which hinders the development of complementary logic circuit. Therefore, the design and synthesis of high-performance n-type organic semiconductors and the improvement of device performance and stability have important scientific significance. In this work, a novel naphthalene diimide (NDI)-vinylogous tetrathiafulvalene derivative (BDTNDI-DTYA)2was designed and synthesized via a π-expanded strategy by fusing the benzene-1,2-dithiol (BDT) and 2-(1,3-dithiol-2-ylidene) acetonitrile (DTYA) moieties onto the NDI core. The chemical structure of the compound was characterized by 1H NMR, 13C NMR, Fourier transform infrared spectroscopy (FT-IR) and high-resolution mass spectrometry (HRMS). The thermal, optical and electrochemical properties of (BDTNDI-DTYA)2 were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), ultraviolet-visible (UV-Vis) absorption spectra and cyclic voltammetry (CV). The energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of (BDTNDI-DTYA)2 calculated from CV were -5.66 and -4.01 eV, respectively. The edge absorption of (BDTNDI-DTYA)2 in thin film showed obvious red-shift (68 nm) relative to that in CHCl3 solution, indicating strong intermolecular interactions in solid state. The bottom-gate and top-contact (BGTC) OFETs based on (BDTNDI-DTYA)2 fabricated by spin-coating method, showed n-type electron transporting characteristics. The average electron mobility of the untreated devices was 0.04 cm2•V-1•s-1 when measured in nitrogen atmosphere and was increased of up to 1.00 cm2•V-1•s-1 when the thin films of (BDTNDI-DTYA)2were thermal annealed at 160 ℃. On the other hand, azulene was used as an additive to treat the thin films of (BDTNDI-DTYA)2 via sublimation, the average electron mobility of OFETs was increased to 0.98 cm2•V-1•s-1. The effect of thermal annealing treatment and azulene-treatment on the performance of (BDTNDI- DTYA)2-based OFETs were investigated by UV-Vis absorption spectra, atomic force microscopy (AFM) and X-ray dif-fraction (XRD). For UV-Vis absorption spectra of thin films of (BDTNDI-DTYA)2, after thermal annealing at 160 ℃ and azulene-treatment, the absorption peak in long-wavelength was enhanced and widened relative to that of the untreated thin films with obvious shoulder peaks and red-shifts (35 and 39 nm, respectively). The AFM and XRD results indicated that the improvement of device performance originated from the improved (BDTNDI-DTYA)2 thin film crystallinity and morphology. In this work, a π-expanded NDI-vinylogous tetrathiafulvalene derivative as n-type organic semiconductor was designed and synthesized, and azulene was used for the first time to effectively regulated the structure and morphology of the active layer of OFETs, which both provide new insights for development of novel organic semiconductors and their high performance OFET devices.
[1] | (a) Wang J.; Ye D.; Meng Q.; Di C.; Zhu D. Adv. Mater. Technol. 2020, 5, 2000218. |
[1] | (b) Shen Z.; Huang W.; Li L.; Li H.; Huang J.; Cheng J.; Fu Y. Small 2023, 19, 2302406. |
[1] | (c) Hu Y.; Wang Z.; Huang Y.; Shi R.; Wang S.; Chen X.; Bi J.; Xuan Y.; Lei Y.; Li L.; Yang C.; Hu W. Chin. J. Chem. 2023, 41, 1539. |
[1] | (d) Yuan L.; Wang Z.; Meng Y.; Wang S.; Sun Y.; Huang Y.; Li L.; Hu W. Chin. Chem. Lett. 2023, 34, 108569. |
[2] | (a) Ren X. C.; Yang F. X.; Gao X. S.; Cheng S. T.; Zhang X. T.; Dong H. L.; Hu W. P. Adv. Energy Mater. 2018, 8, 1801003. |
[2] | (b) Zhu Z.; Guo Y.; Liu Y. Mater. Chem. Front. 2020, 4, 2845. |
[3] | (a) Yin A.; Wang J.; Hu S.; Sun M.; Sun B.; Dong M.; Zhang T.; Feng Z.; Zhang H.; Shi B.; Zhang C.; Liu H. Nano Energy 2023, 106, 108034. |
[3] | (b) Zhao X.; Zhang H.; Zhang J.; Liu J.; Lei M.; Jiang L. Adv. Sci. 2023, 10, 2300483. |
[4] | (a) Shi J.; Jie J.; Deng W.; Luo G.; Fang X.; Xiao Y.; Zhang Y.; Zhang X.; Zhang X. Adv. Mater. 2022, 34, e2200380 |
[4] | (b) Zhang Q.; Jin T. Y.; Ye X.; Geng D. C.; Chen W.; Hu W. P. Adv. Funct. Mater. 2021, 31, 2106151. |
[5] | (a) Kumar B.; Kaushik B. K.; Negi Y. S. Polym. Rev. 2014, 54, 33. |
[5] | (b) Zhao Z.; Yin Z.; Chen H.; Zheng L.; Zhu C.; Zhang L.; Tan S.; Wang H.; Guo Y.; Tang Q.; Liu Y. Adv. Mater. 2017, 29, 1602410. |
[5] | (c) Vasimalla S.; Senanayak S. P.; Sharma M.; Narayan K. S.; Iyer P. K. Chem. Mater. 2014, 26, 4030. |
[5] | (d) Han S.; Yu X.; Shi W.; Zhuang X.; Yu J. Org. Electron. 2015, 27, 160. |
[5] | (e) Yuan Y.; Giri G.; Ayzner A. L.; Zoombelt A. P.; Mannsfeld S. C.; Chen J.; Nordlund D.; Toney M. F.; Huang J.; Bao Z. Nat. Commun. 2014, 5, 3005. |
[6] | (a) Insuasty A.; Maniam S.; Langford S. J. Chem. Eur. J. 2019, 25, 7058. |
[6] | (b) Luo H.; Cai Z.; Tan L.; Guo Y.; Yang G.; Liu Z.; Zhang G.; Zhang D.; Xu W.; Liu Y. J. Mater. Chem. C 2013, 1, 2688. |
[6] | (c) Chen J.; Zhuang X.; Huang W.; Su M.; Feng L.; Swick S. M.; Wang G.; Chen Y.; Yu J.; Guo X.; Marks T. J.; Facchetti A. Chem. Mater. 2020, 32, 5317. |
[6] | (d) Li S. W.; Zhu C. Y. J.; Luo Y. H.; Zhang Y. R.; Teng H. M.; Wang Z. R.; Zhen Y. G. Acta Chim. Sinica 2022, 80, 1600 (in Chinese). |
[6] | (李善武, 朱陈宇杰, 罗尹豪, 张亚茹, 滕汉明, 王宗瑞, 甄永刚, 化学学报, 2022, 80, 1600.) |
[7] | (a) Hu Y.; Wang Z.; Zhang X.; Yang X.; Ge C.; Fu L.; Gao X. Org. Lett. 2017, 19, 468. |
[7] | (b) Wu W.; Li J.; Zhao Z.; Yang X.; Gao X. Org. Chem. Front. 2017, 4, 823. |
[8] | (a) Choudhury A.; Gupta R. K.; Garai R.; Iyer P. K. ACS Appl. Electron. 2021, 3, 5393. |
[8] | (b) Doumon N. Y.; Wang G.; Qiu X.; Minnaard A. J.; Chiechi R. C.; Koster L. J. A. Sci. Rep. 2019, 9, 4350. |
[8] | (c) Ichikawa M.; Yamamura K.; Jeon H. G.; Nakajima M.; Taniguchi Y. J. Appl. Phys. 2011, 109, 054504. |
[8] | (d) Lee Y.; Ho D.; Valentini F.; Earmme T.; Marrocchi A.; Vaccaro L.; Kim C. J. Mater. Chem. C 2021, 9, 16506. |
[9] | (a) Zhong L.; Kang S. H.; Oh J.; Jung S.; Cho Y.; Park G.; Lee S.; Yoon S. J.; Park H.; Yang C. Adv. Funct. Mater. 2022, 32, 2201080. |
[9] | (b) Bao S.; Yang H.; Fan H.; Zhang J.; Wei Z.; Cui C.; Li Y. Adv. Mater. 2021, 33, 2105301. |
[9] | (c) Yu R.; Yao H.; Hong L.; Qin Y.; Zhu J.; Cui Y.; Li S.; Hou J. Nat. Commun. 2018, 9, 4645. |
[9] | (d) Zhang G.; Hu D.; Tang H.; Song H.; Duan S.; Kan Z.; Lu S. Sol. RRL 2023, 7, 2200994. |
[9] | (e) Song X.; Zhang K.; Guo R.; Sun K.; Zhou Z.; Huang S.; Huber L.; Reus M.; Zhou J.; Schwartzkopf M.; Roth S. V.; Liu W.; Liu Y.; Zhu W.; Müller-Buschbaum P. Adv. Mater. 2022, 34, 2200907. |
[9] | (f) Xiao M.; Meng Y.; Tang L.; Li P.; Tang L.; Zhang W.; Hu B.; Yi F.; Jia T.; Cao J.; Xu C.; Lu G.; Hao X.; Ma W.; Fan Q. Adv. Funct. Mater. 2024, 34, 2311216. |
[10] | (a) He Z.; Zhang Z.; Bi S. J. Mater. Sci: Mater. Electron. 2019, 30, 20899. |
[10] | (b) Scaccabarozzi A. D.; Basu A.; Aniés F.; Liu J.; Zapata-Arteaga O.; Warren R.; Firdaus Y.; Nugraha M. I.; Lin Y.; Campoy-Quiles M.; Koch N.; Müller C.; Tsetseris L.; Heeney M.; Anthopoulos T. D. Chem. Rev. 2022, 122, 4420. |
[10] | (c) Jiang X.; Tu K.; Duan T. N.; Xiao Z. Y. Acta Chim. Sinica 2024, 82, 551 (in Chinese). |
[10] | (江雪, 涂开槐, 段泰男, 肖泽云, 化学学报, 2024, 82, 551.) . |
[10] | (c) Yuan L. Q.; Huang Y. N.; Chen X. S.; Gao Y. X.; Ma X. N.; Wang Z. W.; Hu Y. X.; He J. B.; Han C.; Li J.; Li Z. Y.; Weng X. F.; Huang R.; Cui Y.; Li L. Q.; Hu W. P. Nat. Mater. DOI:10.1038/s41563-024-01933-w. |
[11] | (a) Anderson A. G.; Steckler B. M. J. Am. Chem. Soc. 1959, 81, 4941. |
[11] | (b) Lemal D. M.; Goldman G. D. J. Chem. Educ. 1988, 65, 923. |
[11] | (c) Robertson J. M.; Shearer H. M. M.; Sim G. A.; Watson D. G. Acta Cryst. 1962, 15, 1. |
[11] | (d) Hou B.; Li J.; Xin H. S.; Yang X. D.; Gao H. L.; Peng P. Z.; Gao X. K. Acta Chim. Sinica 2020, 78, 788 (in Chinese). |
[11] | (侯斌, 李晶, 辛涵申, 杨笑迪, 高洪磊, 彭培珍, 高希珂, 化学学报, 2020, 78, 788.) . |
[11] | (e) Wang Y.; Xiang J. J.; Ge C. W.; Gao X. K. Acta Chim. Sinica 2023, 81, 1341 (in Chinese). |
[11] | (汪洋, 向焌钧, 葛从伍, 高希珂, 化学学报, 2023, 81, 1341.) |
[12] | (a) Zhou M.; Li J.; Cheng J.; Ge C. W.; Cheng T. Y.; Gao X. K. Chin. J. Org. Chem. 2021, 41, 4400 (in Chinese). |
[12] | (周敏, 李晶, 程杰, 葛从伍, 程探宇, 高希珂, 有机化学, 2021, 41, 4400.) . |
[12] | (b) Gao X. K.; Di C. A.; Hu Y. B.; Yang X. D.; Fan H. Y.; Zhang F. J; Liu Y. Q.; Li H. Q.; Zhu D. B. J. Am. Chem. Soc. 2010, 132, 3697. |
[12] | (c) Leng B.; Lu D.; Jia X.; Yang X.; Gao X. K. Org. Chem. Front. 2015, 2, 372. |
[13] | Azumi R.; G?tz G.; B?uerle P. Synth. Met. 1999, 101, 569. |
[14] | Frisch M. J. T., G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery Jr J. A.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J. Gaussian 16, Wallingford CT, 2016. |
[15] | Hu Y.; Gao X.; Di C.; Yang X.; Zhang F.; Liu Y.; Li H.; Zhu D. Chem. Mater. 2011, 23, 1204. |
[16] | Shukla J.; Ajayakumar M. R.; Mukhopadhyay P. Org. Lett. 2018, 20, 7864. |
[17] | (a) Jelley E. E. Nature 1936, 138, 1009. |
[17] | (b) Bouchard J.; Belletête M.; Durocher G.; Leclerc M. Macromolecules 2003, 36, 4624. |
[17] | (c) Guo X.; Ortiz R. P.; Zheng Y.; Kim M. G.; Zhang S.; Hu Y.; Lu G.; Facchetti A.; Marks T. J. J. Am. Chem. Soc. 2011, 133, 13685. |
[17] | (d) Kang S. H.; Lee D.; Kim H.; Choi W.; Oh J.; Oh J. H.; Yang C. ACS Appl. Mater. Interfaces 2021, 13, 52840. |
[18] | Brown A. R.; Jarrett C. P.; de Leeuw D. M.; Matters M. Synth. Met. 1997, 88, 37. |
[19] | (a) Zaumseil J.; Sirringhaus H. Chem. Rev. 2007, 107, 1296. |
[19] | (b) Higashino T.; Mori T. Phys. Chem. Chem. Phys. 2022, 24, 9770. |
[20] | (a) Zhong L.; Jeong S.; Lee S.; Mai T. L. H.; Park J.; Park J.; Kim W.; Yang C. Chem. Commun. 2023, 59, 12108. |
[20] | (b) Wang J. F; Li Z. Acta Chim. Sinica 2021, 79, 575 (in Chinese). |
[20] | (王金凤, 李振. 化学学报, 2021, 79, 575.) |
[21] | (a) Mas-Torrent M.; Rovira C. Chem. Rev. 2011, 111, 4833. |
[21] | (b) Zhou Q.; Yang J.; Du M.; Yu X.; Li C.; Zhang X.-S.; Peng Q.; Zhang G.; Zhang D. J. Mater. Chem. C 2022, 10, 2814. |
[21] | (c) Chen X.; Guo Y.; Tan L.; Yang G.; Li Y.; Zhang G.; Liu Z.; Xu W.; Zhang D. J. Mater. Chem. C 2013, 1, 1087 |
[22] | Wang Y.; Sun S.; Huang Y.; Fu Y.; Qi J.; Tie K.; Wang Z.; Jiao F.; Si R.; Chen X.; Li L.; Hu W. Aggregate 2023, 4, e379 |
[23] | (a) Scholes D. T.; Yee P. Y.; Lindemuth J. R.; Kang H.; Onorato J.; Ghosh R.; Luscombe C. K.; Spano F. C.; Tolbert S. H.; Schwartz B. J. Adv. Funct. Mater. 2017, 27, 1702654. |
[23] | (b) Jeong J. W.; Jo G.; Choi S.; Kim Y. A.; Yoon H.; Ryu S.-W.; Jung J.; Chang M. ACS Appl. Mater. Interfaces 2018, 10, 18131. |
[23] | (c) Guo C.; Zhang Q.; Li H.; Lu J. Chem. Asian J. 2020, 15, 2493. |
[24] | Nozoe T.; Seto S.; Matsumura S.; Murase Y. Bull. Chem. Soc. Jan. 1962, 35, 1179. |
/
〈 |
|
〉 |