综述

近红外二区硫系银量子点制备方法及癌症诊疗应用研究进展

  • 刘童 ,
  • 皮慧慧 ,
  • 陈冰昆 ,
  • 张小玲
展开
  • a 北京理工大学化学与化工学院 北京 100081
    b 北京理工大学光电学院 北京 100081

刘童, 2022年北京理工大学在读硕士研究生, 主要从事基于肿瘤诊疗近红外二区硫系银量子点的制备与应用研究.

皮慧慧, 2022年北京理工大学在读博士研究生, 主要从事基于硫系银量子点光电探测器的制备与应用研究.

陈冰昆, 博士, 北京理工大学光电学院长聘副教授/特别研究员, 博士生导师. 主要从事光电功能材料及其在发光、显示等领域应用研究工作. 2013年在北京理工大学取得博士学位. 入选2014年度“香江学者”研究计划, 于2014~2016年在香港城市大学功能光子学研究中心开展为期两年的博士后研究. 发表SCI论文40余篇, 他引1600余次, 单篇最高引用超400次. 相关研究成果发表在材料、化学、物理化学、光学、纳米等多学科领域国际知名期刊上, 如Adv. Mater., Adv. Funct. Mater., Chem. Mater., Adv. Opt. Mater.等学术杂志. 目前担任光学、纳米、材料领域多个国际知名期刊同行评阅人, MRL期刊青年编委等职务. 获得2018年北京市科学技术奖二等奖.

张小玲, 博士, 北京理工大学化学与化工学院教授, 博士生导师. 主要从事新型光学探针及化学生物传感和环境友好型氟化物等研究工作. 在Angew. Chem.、Anal. Chem.、Chem. Commun.、Biosensors and Bioelectronics、JMC B、Sensors & Actuators: B. Chem等期刊发表学术论文200余篇, 授权国家发明专利10余项, 以主持人或主要完成人获省部级教学成果二等奖2项, 国家技术发明二等奖1项, 省部级科技成果一等奖2项、二等奖3项.

收稿日期: 2024-06-03

  网络出版日期: 2024-07-23

基金资助

国家自然科学基金(22174008); 国家自然科学基金(22177013); 国家自然科学基金(21974009); 国家自然科学基金(22274010); 基础加强领域基金(2021-JCJQ-2JJ-XXXX); 陕西省人工结构功能材料与器件重点实验室开放基金(AFMD-KFJJ-22102)

Research Progress on the Preparation Method of NIR-II Silver Chalcogenide Quantum Dots and Its Application in Cancer Diagnosis and Treatment

  • Tong Liu ,
  • Huihui Pi ,
  • Bingkun Chen ,
  • Xiaoling Zhang
Expand
  • a School of Chemistry and Chemical Engineering, Beijing Insititute of Technology, Beijing 100081
    b School of Optics and Photonics, Beijing Insititute of Technology, Beijing 100081

Received date: 2024-06-03

  Online published: 2024-07-23

Supported by

National Natural Science Foundation of China(22174008); National Natural Science Foundation of China(22177013); National Natural Science Foundation of China(21974009); National Natural Science Foundation of China(22274010); Foundation Enhancement Program(2021-JCJQ-2JJ-XXXX); Fundamental Research Funds of Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices(AFMD-KFJJ-22102)

摘要

发展新型早期诊断和准确治疗技术是癌症领域重要研究方向. 近红外二区(NIR-II, 1000~1700 nm)荧光成像技术具有组织散射弱与自身荧光低等特点, 因其组织穿透深、空间分辨率好、信噪比高而受到广泛关注. 作为一类NIR-II探针, 硫系银量子点具有可调节的发光性质和良好的生物相容性, 不仅能够用于NIR-II荧光成像, 而且具有实现磁共振成像、计算机断层扫描等多种成像方式以及光致发热等治疗功能的潜力, 有望为癌症诊断和治疗提供新的解决方案. 本文综述了硫系银量子点的分类、NIR-II碲化银量子点的制备及其在肿瘤诊疗方面应用的最新进展, 重点归纳总结了近十年硫系银量子点的研究进展, 并展望了此类多功能NIR-II纳米探针面临的挑战和机遇.

本文引用格式

刘童 , 皮慧慧 , 陈冰昆 , 张小玲 . 近红外二区硫系银量子点制备方法及癌症诊疗应用研究进展[J]. 化学学报, 2024 , 82(9) : 1001 -1012 . DOI: 10.6023/A24060181

Abstract

With the increasing number of cancer-related deaths year by year, the development of new early diagnosis and precise treatment techniques has become a crucial research topic in the field of oncology. Fluorescence imaging, as a commonly used diagnostic method for cancer, offers advantages such as non-ionizing radiation and high sensitivity. Compared to traditional visible region and the first near-infrared window imaging technologies, the second near-infrared window (NIR-II, 1000~1700 nm) fluorescence imaging technology presents characteristics of weak tissue scattering and low autofluorescence. Due to its deep tissue penetration, good spatial resolution, and high signal to noise ratio, it has attracted widespread attention. In recent years, a considerable amount of probes operating in NIR-II have been consistently under development. Quantum dots, as a type of nanoprobes, are influenced by the quantum confinement effect, providing tunable luminescent properties that allow absorption and emission wavelengths to span from the visible region to NIR-II. Silver chalcogenide quantum dots, as a low-toxicity type of quantum dots, exhibit excellent biocompatibility. Different methods have been developed to prepare silver chalcogenide quantum dots, including binary and ternary quantum dots, with emission spectra covering the entire range from 350 to 1700 nm. Silver chalcogenide quantum dots not only find applications in NIR-II fluorescence imaging but also hold potential for various imaging modalities such as magnetic resonance imaging, computed tomography, as well as therapeutic functions like photothermal therapy. They can serve as multifunctional biological probes for biological systems, providing innovative approaches for cancer diagnosis and therapy. This article reviews the classification of silver chalcogenide quantum dots, the preparation of NIR-II Ag2Te quantum dots and the latest advancements in their application in tumor diagnosis and treatment. It outlines the advancements made in the study of silver chalcogenide quantum dots in the last ten years, emphasizing the obstacles and possibilities encountered in the development of these versatile NIR-II nanoprobes.

参考文献

[1]
Sung H.; Ferlay J.; Siegel R. L.; Laversanne M.; Soerjomataram I.; Jemal A.; Bray F. Ca-Cancer J. Clin. 2021, 71, 209.
[2]
Ai X.-Z.; Mu J.; Xing B.-G. Theranostics, 2016, 6, 2439.
[3]
Jiang S.; Lin J.; Huang P. Adv. Healthc. Mater. 2023, 12, 2202208.
[4]
Lammers T.; Aime S.; Hennink W. E.; Storm G.; Kiessling F. Acc. Chem. Res. 2011, 44, 1029.
[5]
Ng K. K.; Zheng G. Chem. Rev. 2015, 115, 11012.
[6]
Li C.; Chen G.; Zhang Y.; Wu F.; Wang Q. J. Am. Chem. Soc. 2020, 142, 14789.
[7]
Yoon S.; Cheon S. Y.; Park S.; Lee D.; Lee Y.; Han S.; Kim M.; Koo H. Biomater. Res. 2022, 26, 57.
[8]
Guo W.-S.; Yang W.-T.; Wang Y.; Sun X.-L.; Liu Z.-Y.; Zhang B.-B.; Chang J.; Chen X.-Y. Nano Res. 2014, 7, 1581.
[9]
Lavis L. D. Biochemistry 2017, 56, 5165.
[10]
Zhao J.; Zhong D.; Zhou S. J. Mater. Chem. B 2017, 6, 349.
[11]
Wang T.; Chen Y.; Wang B.; Gao X.; Wu M. Biomolecules 2022, 12, 1044.
[12]
Diao S.; Hong G.-S.; Antaris A. L.; Blackburn J. L.; Cheng K.; Cheng Z.; Dai H.-J. Nano Res. 2015, 8, 3027.
[13]
Schmidt E. L.; Ou Z.; Ximendes E.; Cui H.; Keck C. H. C.; Jaque D.; Hong G. Nat. Rev. Methods Primers 2024, 4, 23.
[14]
Liu Y.; Li Y.; Koo S.; Sun Y.; Liu Y.; Liu X.; Pan Y.; Zhang Z.; Du M.; Lu S.; Qiao X.; Gao J.; Wang X.; Deng Z.; Meng X.; Xiao Y.; Kim J. S.; Hong X. Chem. Rev. 2022, 122, 209.
[15]
Mu J.; Xiao M.; Shi Y.; Geng X.; Li H.; Yin Y.; Chen X. Angew. Chem. Int. Ed. 2022, 61, e202114722.
[16]
Su Y.; Yu B.; Wang S.; Cong H.; Shen Y. Biomaterials, 2021, 271, 120717.
[17]
Zheng B.; Fan J.; Chen B.; Qin X.; Wang J.; Wang F.; Deng R.; Liu X. Chem. Rev. 2022, 122, 5519.
[18]
Borovaya M.; Horiunova I.; Plokhovska S.; Pushkarova N.; Blume Y.; Yemets A. Int. J. Mol. Sci. 2021, 22, 12202.
[19]
Wang Y.; Hu Y.; Ye D.-J. Angew. Chem. Int. Ed. 2022, 61, e202209512
[20]
Xu Y.; Zhao Y.; Zhang Y.-J.; Cui Z.-F.; Wang L.-H.; Fan C.-H.; Gao J.-M.; Sun Y.-H. Acta Chim. Sinica 2018, 76, 393 (in Chinese).
[20]
(徐毅, 赵彦, 张叶俊, 崔之芬, 王丽华, 樊春海, 高基民, 孙艳红, 化学学报, 2018, 76, 393.)
[21]
Alivisatos A. P. J. Phys. Chem. 1996, 100, 13226.
[22]
Kovalenko M. V.; Manna L.; Cabot A.; Hens Z.; Talapin D. V.; Kagan C. R.; Klimov V. I.; Rogach A. L.; Reiss P.; Milliron D. J.; Guyot-Sionnnest P.; Konstantatos G.; Parak W. J.; Hyeon T.; Korgel B. A.; Murray C. B.; Heiss W. ACS Nano 2015, 9, 1012.
[23]
Gui R.-J.; Jin H.; Wang Z.-H.; Tan L.-J. Coord. Chem. Rev. 2015, 296, 91.
[24]
Tang H.; Yang S.-T.; Ke D.M.; Yang Y.-F.; Liu J.-H.; Chen X.; Wang H.-F.; Liu Y.-F. Toxicol. Res. 2017, 6, 693.
[25]
Zhang J.-Z.; Tang H.; Chen X.-Z.; Su Q.; Xi W.-S.; Liu Y.-Y.; Liu Y.; Cao A.; Wang H.-F. J. Nanopart. Res. 2020, 22, 287.
[26]
Li B.-J.; Wang G.-H.; Tong Y.-J.; Zhang Y.-J.; Sun S.-K.; Yu C.-S. ACS Biomater. Sci. Eng. 2023, 9, 449.
[27]
Liu J.; Zheng X.-P.; Yan L.; Zhou L.-J.; Tian G.; Yin W.-Y.; Wang L.-M.; Liu Y.; Hu Z.-B.; Gu Z.-J.; Chen C.-Y.; Zhao Y.-L. ACS Nano 2015, 9, 696.
[28]
Wang Z.-T.; Huang P.; Jacobson O.; Wang Z.; Liu Y.-J.; Lin L.-S.; Lin J.; Lu N.; Zhang H.-M.; Tian R.; Niu G.; Liu G.; Chen X.-Y. ACS Nano 2016, 10, 3453.
[29]
Chaudhuri R. G.; Paria S. J. Colloid Interface Sci. 2012, 369, 117.
[30]
Huang Y.; Tian F.; Sun L.; Ji C.; Grimes C. A.; Cai Q. Sens. Actuators, B 2023, 381, 133457.
[31]
Zhu C.-N.; Jiang P.; Zhang Z.-L.; Zhu D.-L.; Tian Z.-Q.; Pang D.-W. ACS Appl. Mater. Inter. 2013, 5, 1186.
[32]
Liu Z.-Y.; Liu A.-A.; Fu H.; Cheng Q.-Y.; Zhang M.-Y.; Pan M.-M.; Liu L.-P.; Luo M.-Y.; Tang B.; Zhao W.; Kong J.; Shao X.-G.; Pang D.-W. J. Am. Chem. Soc. 2021, 143, 12867.
[33]
Zhang Y.-J.; Liu Y.-S.; Li C.-Y.; Chen X.-Y.; Wang Q.-B. J. Phys. Chem. C 2014, 118, 4918.
[34]
Ma Y.; Zhang Y.; Yu W.-W. J. Mater. Chem. C 2019, 7, 13662.
[35]
Zivkovic D.; Cosovic V.; Zivkovic Z.; Strbac N.; Sokic M.; Talijan N.; Boyanov B.; Mitovski A. Mater. Sci. Semicond. Process. 2013, 16, 217.
[36]
Junod P.; Hediger H.; Kilchor B.; Wullschleger, J. Philos. Mag. 1977, 36, 941.
[37]
Sun S.-r.; Xia D.-g. Solid State Ionics 2008, 179, 2330.
[38]
Dong B.-H.; Li C.-Y.; Chen G.-C.; Zhang Y.-J.; Zhang Y.; Deng M.-J.; Wang Q.-B. Chem. Mater. 2013, 25, 2503.
[39]
Kapitza P. New J. Chem. 1928, 119, 358.
[40]
Yang M.; Gui R.-J.; Jin H.; Wang Z.-H.; Zhang F.-F.; Xia J.-F.; Bi S.; Xia Y.-Z. Colloids Surf., B 2015, 126, 115.
[41]
Zhu C.; Chen Z.; Gao S.; Goh B.L.; Bin Samsudin I.; Lwe K. W.; Wu Y.; Wu C.; Su X. Prog. Nat. Sci.: Mater. Int. 2019, 29, 628.
[42]
Lian W.; Fang Z.; Tu D.; Li J.; Han S.; Li R.-F.; Shang X.-Y.; Chen X.-Y. Acta Chim. Sinica 2022, 80, 625 (in Chinese).
[42]
(廉纬, 方泽铠, 涂大涛, 李嘉尧, 韩思远, 李仁富, 商晓颖, 陈学元, 化学学报, 2022, 80, 625.)
[43]
Tappan B. A.; Horton M. K.; Brutchey R. L. Chem. Mater. 2020, 32, 2935.
[44]
Li J.; Guan T.-Y.; Tu D.-T.; Lian W.; Zhang P.; Han S.-Y.; Wenb F.; Chen X.-Y. Chem. Commun. 2022, 58, 2204.
[45]
Hamilton M. A.; Barnes A. C.; Howells W. S.; Fischer H. E. J. Phys.: Condens. Matter. 2001, 13, 2425.
[46]
Li P.; Peng Q.; Li Y.-D. Chem. Eur. J. 2011, 17, 941.
[47]
Horton N. G.; Wang K.; Kobat D.; Clark C. G.; Wise F. W.; Schaffer C. B.; Xu C. Nat. Photonics 2013, 7, 205.
[48]
Wang M.-R.; Wu C.-Y.; Sinefeld D.; Li B.; Xia F.; Xu C. Biomed. Opt. Express 2018, 9, 3534.
[49]
Nieves L. M.; Mossburg K.; Hsu J. C.; Maidment A. D. A.; Cormode D. P. Nanoscale 2021, 13, 19306.
[50]
Zhu H.-M.; Song N.-H.; Lian T.-Q. J. Am. Chem. Soc. 2010, 132, 15038.
[51]
Yarema M.; Pichler S.; Sytnyk M.; Seyrkammer R.; Lechner R.T.; Fritz-Popovski G.; Jarzab D.; Szendrei K.; Resel R.; Korovyanko O.; Loi M.A.; Paris O.; Hesser G.; Heiss W. ACS Nano 2011, 5, 3758.
[52]
Sahu A.; Qi L.; Kang M. S.; Deng D.; Norris D. J. J. Am. Chem. Soc. 2011, 133, 6509.
[53]
Chen S.; Tang T.; Huang B.; Liu F.; Cui R.; Zhang M.-X.; Sun T.-L. ACS Appl. Nano Mater. 2022, 5, 3415.
[54]
Chen C.; He X.; Gao L.; Ma N. ACS Appl. Mater. Inter. 2013, 5, 1149.
[55]
Ayaskanta S.; Ankur K.; Donna D. D.; David J. N. Chem. Commun. 2012, 48, 5458.
[56]
Jin H.; Gui R.-J.; Sun J.; Wang Y.-F. Colloids Surf., B 2016, 143, 118.
[57]
Zhang Y.; Hong G.-S.; Zhang Y.-J.; Chen G.-C.; Li F.; Dai H.-J.; Wang Q.-B. ACS Nano 2012, 6, 3695.
[58]
Shi X.-H.; Dai Y.-Y.; Wang L.; Wang Z.-G.; Liu S.-L. ACS Appl. Bio Mater. 2021, 4, 7692.
[59]
Ding C.; Huang Y.-J.; Shen Z.-Y.; Chen X.-Y. Adv. Mater. 2021, 33, 2007768.
[60]
Jiang P.; Zhu C.-N.; Zhang Z.-L.; Tian Z.-Q.; Pang D.-W. Biomaterials 2012, 33, 5130.
[61]
Gu Y.-P.; Cui R.; Zhang Z.-L.; Xie Z.-X.; Pang D.-W. J. Am. Chem. Soc. 2012, 134, 79.
[62]
Yang H.-Y.; Zhao Y.-W.; Zhang Z.-Y.; Xiong H.-M.; Yu S.-N. Nanotechnology 2013, 24, 055706.
[63]
Li X.; Liu Z.; Luo K.; Yin X.; Lin X.; Zhu C.-L. Chem. Asian J. 2019, 14, 155.
[64]
Dong L.; Li W.; Yu L.; Sun L.; Chen Y.; Hong G.-B. ACS Appl. Mater. Inter. 2020, 12, 42558.
[65]
Wang S.-B.; Hu B.; Liu C.-C.; Yu S.-H. J. Colloid Interface Sci. 2008, 325, 351.
[66]
Wang C.-X.; Wang Y.; Xu L.; Zhang D.; Liu M.-X.; Li X.-W.; Sun H.-C.; Lin Q.; Yang B. Small 2012, 8, 3137.
[67]
Wang Y.; Yan X.-P. Chem. Commun. 2013, 49, 3324.
[68]
Yang T.; Tang Y.-A.; Liu L.; Lv X.-Y.; Wang Q.-L.; Ke H.-T.; Deng Y.-B.; Yang H.; Yang X.-L.; Liu G.; Zhao Y.-L.; Chen H.-B. ACS Nano 2017, 11, 1848.
[69]
Lu F.; Ju W.; Zhao N.; Zhao T.; Zhan C.; Wang Q.; Fan Q.; Huang W. Biochem. Biophys. Res. Commun. 2020, 529, 930.
[70]
Zhang X.; Wang W.; Su L.; Ge X.; Ye J.; Zhao C.; He Y.; Yang H.; Song J.-B.; Duan H.-W. Nano Lett. 2021, 21, 2625.
[71]
Sun P.; Li K.; Liu X.; Wang J.; Qiu X.; Wei W.; Zhao J. Angew. Chem. Int. Ed. 2023, 62, e202300085
[72]
Yin X.-H.; Li X.-L.; Zhu C.-L.; Lin X.-C.; Xie Z.-H. New J. Chem. 2020, 44, 4850.
[73]
Zhou J.-Q.; Huang Y.; Zhang Z.-L.; Pang D.-W.; Tian Z.-Q. Chem. J. Chinese U. 2021, 6, 2072.
[74]
Liu J.; Zheng D.; Zhong L.-Z.; Gong A.; Wu S.; Xie Z.-X. Biochem. Biophys. Res. Commun. 2021, 544, 60.
[75]
Kumar N.; Ray S. S.; Ngila J. C. New J. Chem. 2017, 41, 14618.
[76]
Ortega-Rodriguez A.; Shen Y.; Zabala Gutierrez I.; Santos H.D.A.; Torres Vera V.; Ximendes E.; Villaverde G.; Lifante J.; Gerke C.; Fernandez N.; Calderon O. G.; Melle S.; Marques-Hueso J.; Mendez-Gonzalez D.; Laurenti M.; Jones C. M. S.; Manuel Lopez-Romero J.; Contreras-Caceres R.; Jaque D.; Rubio-Retama J. ACS Appl. Mater. Inter. 2020, 12, 12500.
[77]
Ding Q.; Zhao J.; Zhang H.; Li C.; Sun M.; Chen C.; Lin H.-W.; Xu C.-L.; Kuang H.; Xu L.-G. Angew. Chem. Int. Ed. 2022, 61, e202210370
[78]
Zhou Y.; Huang B.; Chen S.-H.; Liu S.-L.; Zhang M.; Cui R. Nano Res. 2022, 16, 2719.
[79]
Chi Y.; Hu Q.; Yi S.; Qu H.; Xiao Y. Talanta 2023, 262, 124668.
[80]
Yang H.; Li R.; Zhang Y.; Yu M.; Wang Z.; Liu X.; You W.; Tu D.; Sun Z.; Zhang R.; Chen X.; Wang Q. J. Am. Chem. Soc. 2021, 143, 2601.
[81]
Zhang Y.-J.; Yang H.; An X.; Wang Z.; Yang X.; Yu M.; Zhang R.; Sun Z.-Q.; Wang Q.-B. Small 2020, 16, 2001003.
[82]
Reiss P.; Protiere M.; Li L. Small 2009, 5, 154.
[83]
Gahyeon K.; Dongsun C.; So Y. E.; Haemin S.; Kwang S. J. Nano Lett. 2021, 21, 8073.
[84]
Wang K.; Deng K.-H.; Tian Y.-S.; Sun M.-Y.; Yu Z.-l.; Tian Z.-Q.; Zhang Z.-L. ACS Appl. Nano Mater. 2023, 6, 14289.
[85]
Santos H. D. A.; Zabala Gutierrez I.; Shen Y.; Lifante J.; Ximendes E.; Laurenti M.; Mendez-Gonzalez D.; Melle S.; Calderon O. G.; Lopez Cabarcos E.; Fernandez N.; Chaves-Coira I.; Lucena-Agell D.; Monge L.; Mackenzie M. D.; Marques-Hueso J.; Jones C. M. S.; Jacinto C.; del Rosal B.; Kar A. K.; Rubio-Retama J.; Jaque D. Nat. Commun. 2020, 11, 2933.
[86]
Peterson M. D.; Cass L. C.; Harris R. D.; Edme K.; Sung K.; Weiss E. A. Annu. Rev. Phys. Chem. 2014, 65, 317.
[87]
Wuister S. F.; Donegá C. D.; Meijerink A. J. Phys. Chem. B 2004, 108, 17393.
[88]
Kim T.-G.; Zherebetskyy D.; Bekenstein Y.; Oh M. H.; Wang L.-W.; Jang E.; Alivisatos A. P. ACS Nano 2018, 12, 11529.
[89]
Zabala Gutierrez I.; Gerke C.; Shen Y.; Ximendes E.; Manso Silvan M.; Marin R.; Jaque D.; Calderon O. G.; Melle S.; Rubio-Retama J. ACS Appl. Mater. Inter. 2022, 14, 4871.
[90]
Yu M.; Zhang Z.; Zhu G.; Gu Z.; Duan Y.; Yu L.; Gao G.; Sun T.-L. Acta Chim. Sinica 2021, 79, 1281 (in Chinese).
[90]
(余梦, 张子俊, 朱国委, 谷振华, 段玉霖, 余良翀, 高冠斌, 孙涛垒, 化学学报, 2021, 79, 1281.)
[91]
Karimipour M.; Moradi N.; Molaei M. J. Lumin. 2017, 182, 91.
[92]
Che D.; Ding D.; Wang H.; Zhang Q.; Li Y. J. Alloys Compd. 2016, 678, 51.
[93]
Tang S.-L.; He C.-S.; Li D.; Cai W.-H.; Fan L.-Z.; Li Y.-C. J. Mater. Sci. 2018, 53, 11355.
[94]
Du Y.-P.; Xu B.; Fu T.; Cai M.; Li F.; Zhang Y.; Wang Q.-B. J. Am. Chem. Soc. 2010, 132, 1470.
[95]
Hong G.-S.; Antaris A. L.; Dai H.-J. Nat. Biomed. Eng. 2017, 1, 0010.
[96]
Owens E. A.; Henary M.; El Fakhri G.; Choi H. S. Acc. Chem. Res. 2016, 49, 1731.
[97]
Wang B.; Cai X.-D.; Xiao J.-X. Acta Chim. Sinica 2024, 82, 367 (in Chinese).
[97]
(王博, 蔡向东, 肖建喜, 化学学报, 2024, 82, 367.)
[98]
Subhan M. A.; Yalamarty S. S. K.; Filipczak N.; Parveen F.; Torchilin V. P. J. Pers. Med. 2021, 11, 571.
[99]
Tian H.; Zhang T.; Qin S.; Huang Z.; Zhou L.; Shi J.; Nice E. C.; Xie N.; Huang C.-H.; Shen Z.-S. J. Hematol. Oncol. 2022, 15, 132.
[100]
Zhang Y.; Zhao N.; Qin Y.; Wu F.; Xu Z.; Lan T.; Cheng Z.; Zhao P.; Liu H. Nanoscale, 2018, 10, 16581.
[101]
Qu S.-H.; Jia Q.; Li Z.; Wang Z.-L.; Shang L. Sci. Bull. 2022, 67, 1274.
[102]
Zhang J.-J.; Lin Y.; Zhou H.; He H.; Ma J.-J.; Luo M.-Y.; Zhang Z.-L.; Pang D.-W. Adv. Healthc. Mater. 2019, 8, 1900341.
[103]
Dong L.-L.; Zhang P.; Lei P.-P.; Song S.-Y.; Xu X.; Du K.-M.; Feng J.; Zhang H.-J. ACS Appl. Mater. Inter. 2017, 9, 20426.
[104]
Yu M.-X.; Ma J.-J.; Wang J.-M.; Cai W.-G.; Zhang Z.; Huang B.; Sun M.-Y.; Cheng Q.-Y.; Zhang Z.-L.; Pang D.-W.; Tian Z.-Q. ACS Appl. Nano Mater. 2020, 3, 6071.
[105]
Yu X.; Liu X.; Wu W.; Yang K.; Mao R.; Ahmad F.; Chen X.; Li W. Angew. Chem. Int. Ed. 2019, 58, 2017.
[106]
Muthu M. S.; Leong D. T.; Mei L.; Feng S.-S. Theranostics 2014, 4, 660.
[107]
Li Y.; Wang W.; Zhang Y.-T.; Xiao S.-Z.; Lan H.-C.; Geng P. Acta Chim. Sinica 2024, 82, 443 (in Chinese).
[107]
(李燕, 王玮, 张毓婷, 肖述章, 兰海闯, 耿鹏, 化学学报, 2024, 82, 443.)
[108]
Ryu J. H.; Lee S.; Son S.; Kim S. H.; Leary J. F.; Choi K.; Kwon I. C. J. Controlled Release 2014, 190, 477.
[109]
Li X.; Kim J.; Yoon J.; Chen X. Adv. Mater. 2017, 29, 1606857.
[110]
Han R.-X.; Liu Q.-Y.; Lu Y.; Peng J.-R.; Pan M.; Wang G.-H.; Chen W.; Xiao Y.; Yang C.-L.; Qian Z.-Y. Biomaterials 2022, 281, 121328.
[111]
Zhu C.-N.; Chen G.; Tian Z.-Q.; Wang W.; Zhong W.-Q.; Li Z.; Zhang Z.-L.; Pang D.-W. Small 2017, 13, 1602309.
文章导航

/