无负极锂金属电池在局部高浓度电解液中的产气研究
收稿日期: 2024-08-27
网络出版日期: 2024-09-06
基金资助
国家自然科学基金(22272205); 国家资助博士后研究人员计划(GZC20233152); 湖南省普通高等学校科技创新团队支持项目资助.
Gas Generation in Anode-Free Li-Metal Batteries with Localized High-Concentration Electrolytes
Received date: 2024-08-27
Online published: 2024-09-06
Supported by
National Natural Science Foundation of China(22272205); Postdoctoral Fellowship Program of China Postdoctoral Science Foudation(GZC20233152); Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China.
郭姿珠 , 张睿 , 孙旦 , 王海燕 , 黄小兵 , 唐有根 . 无负极锂金属电池在局部高浓度电解液中的产气研究[J]. 化学学报, 2024 , 82(9) : 919 -924 . DOI: 10.6023/A24050167
The introduction of localized high-concentration electrolyte (LHCE), which inherits the advanced properties of concentrated electrolytes and exhibits lower viscosity and cost, is one of the important methods to improve the cycling stability of lithium metal anode. Although the similar strategy also has been proposed to extend the durable life of anode-free lithium metal batteries (AF-LMBs), few studies have focused on the electrolyte decomposition reaction and gas production. In this work, a typical LHCE system consisting of lithium bis(fluorosulfonyl)imide (LiFSI) salt, 1,2-dimethoxyethane (DME) solvent and tetrafluoroethyl tetrafluoropropyl ether (HFE) diluter were chosen, and Cu||NCM712 pouch cells were assembled to investigate the effects of LHCE concentration (0.7, 1.2, 1.7 and 2.3 mol/L), working temperature (25 and 45 ℃) and charging cutoff voltage (3.8 and 4.3 V) on the gas production of AF-LMB systems. Combined with gas chromatography, Raman spectroscopy and electrochemical tests, it is found that the concentration of lithium salt is a significant factor affecting the cycle life and gas production volume. The solvation structure gradually evolves and the number of free solvent molecules in LHCE reduces as the concentration of lithium salt increases, inhibiting the oxidation decomposition of electrolyte and gas production of battery. Moreover, the electrolyte decomposition is also dependent with the variety of cathode material. In contrast with lithium iron phosphate (LiFePO4) cathode, NCM712 cathode results in faster capacity decay of the full-cell and higher gas volume, which might be ascribed to the transition metal elements with the catalytic effect. Meanwhile, scanning electron microscope images indicate uniform and dense lithium deposition on the Cu foil, and X-ray photoelectron spectroscopy tests also reveal that more inorganic solid electrolyte interface (SEI) components are formed on the surface of lithium metal, which serves as the excellent protective layer and is beneficial to suppressing the side reaction. This work is expected to provide guidance for the gas production research of other ether-based LHCE systems.
| [1] | Weber R.; Genovese M.; Louli A.; Hames S.; Martin C.; Hill I. G.; Dahn J. Nat. Energy 2019, 4, 683. |
| [2] | Kwon H.; Kim H.; Hwang J.; Oh W.; Roh Y.; Shin D.; Kim H. T. Nat. Energy 2019, 9, 57. |
| [3] | Wang J.; Huang W.; Pei A.; Li Y.; Shi F.; Yu X.; Cui Y. Nat. Energy 2019, 4, 664. |
| [4] | Feng S. S.; Liu X.-B.; Guo S.-L.; He B.-B.; Gao Z.-G.; Chen M.-Y.; Gong J.-B. CIESC J. 2022, 73, 97 (in Chinese). |
| [4] | (丰闪闪, 刘晓斌, 郭石麟, 何兵兵, 高振国, 陈明洋, 龚俊波, 化工学报, 2022, 73, 97.) |
| [5] | Albertus P.; Babinec S.; Litzelman S.; Newman A. Nat. Energy 2018, 3, 16. |
| [6] | Wang K.; Li X.; Wang N.; Yang Z.; Gao J.; He J.; Zhang Y.; Huang C. ACS Appl. Energy Mater. 2020, 3, 2623. |
| [7] | Qian J.; Adams B.-D.; Zheng J.; Xu W.; Henderson W. A.; Wang J.; Bowden M. E.; Xu S.; Hu J.; Zhang J.-G. Adv. Funct. Mater. 2016, 26, 7094. |
| [8] | Li Y.; Bu M.; Mu C.; Yang C. Mater. Lett. 2024, 355, 135449. |
| [9] | Li P.; Kim H.; Ming J.; Jung H. G.; Belharouak I.; Sun Y.-K. eScience 2021, 1, 3. |
| [10] | Lin L.; Qin K.; Hu Y.-S.; Li H.; Huang X.; Suo L.; Chen L. Adv. Mater. 2022, 34, 2110323. |
| [11] | Lee Y.; Lee T. K.; Kim S.; Lee J.; Ahn Y.; Kim K.; Ma H.; Park G.; Lee S.-M.; Kwak S. K. Nano Energy 2020, 67, 104309. |
| [12] | Wu B.; Chen C.; Raijmakers L. H.; Liu J.; Danilov D. L.; Eichel R.-A.; Notten P. H. Energy Stor. Mater. 2023, 57, 508. |
| [13] | Chen J.; Xiang J.; Chen X.; Yuan L.; Li Z.; Huang Y. Energy Stor. Mater. 2020, 30, 179. |
| [14] | Zhuang R.; Xu X.-S.; Qu C.-Z.; Xu S.-Q.; Yu T.; Wang H.-Q.; Xu F. Acta Chim. Sinica 2021, 79, 378 (in Chinese). |
| [14] | (庄容, 许潇洒, 曲昌镇, 徐顺奇, 于涛, 王洪强, 徐飞, 化学学报, 2021, 79, 378.) |
| [15] | He Z.-X.; Chen Y.-W.; Huang F.-Y.; Jie Y.-L.; Li X.-P.; Cao R.-G.; Jiao S.-H. Acta Phys.-Chim. Sin. 2022, 38, 2205005 (in Chinese). |
| [15] | (何子旭, 陈亚威, 黄凡洋, 揭育林, 李新鹏, 曹瑞国, 焦淑红, 物理化学学报, 2022, 38, 2205005.) |
| [16] | Hagos T. T.; Thirumalraj B.; Huang C.-J.; Abrha L. H.; Hagos T. M.; Berhe G. B.; Bezabh H. K.; Cherng J.; Chiu S.-F.; Su W.-N. ACS Appl. Mater. Interfaces 2019, 11, 9955. |
| [17] | Hagos T. M.; Hagos T. T.; Bezabh H. K.; Berhe G. B.; Abrha L. H.; Chiu S.-F.; Huang C.-J.; Su W.-N.; Dai H.; Hwang B. J. ACS Appl. Energy Mater. 2020, 3, 10722. |
| [18] | Logan E.; Louli A.; Genovese M.; Trussler S.; Dahn J. J. Electrochem. Soc. 2021, 168, 060527. |
| [19] | Kwak W. J.; Lim H. S.; Gao P.; Feng R.; Chae S.; Zhong L.; Read J.; Engelhard M. H.; Xu W.; Zhang J. G. Adv. Funct. Mater. 2021, 31, 2002927. |
| [20] | Liu Q.; Liu Y.; Chen Z.; Ma Q.; Hong Y.; Wang J.; Xu Y.; Zhao W.; Hu Z.; Hong X. Adv. Funct. Mater. 2023, 33, 2209725. |
| [21] | Jia H.; Zou L.; Gao P.; Cao X.; Zhao W.; He Y.; Engelhard M. H.; Burton S. D.; Wang H.; Ren X. Adv. Energy Mater. 2019, 9, 1900784. |
| [22] | Lu G.-X.; Nai J.-W.; Yuan H.-D.; Wang J.-C.; Zheng J.-H.; Ju Z.-J.; Jin C.-B.; Wang Y.; Liu T.-F.; Liu Y.-J.; Tao X.-Y. ACS Nano 2022, 16, 9883. |
| [23] | Ren X.; Zou L.; Cao X.; Engelhard M.; Liu W.; Burton S. D.; Lee H.; Niu C.; Matthews B.; Zhu Z.; Wang C.; Arey B.; Xiao J.; Liu J.; Zhang J.; Xu W. Joule 2019, 3, 1662. |
| [24] | Qiao Y.; Yang H.; Chang Z.; Deng H.; Li X.; Zhou H. Nat. Energy 2021, 6, 653. |
| [25] | Jie Y.; Wang S.; Weng S.; Liu Y.; Yang M.; Tang C.; Li X.; Zhang Z.; Zhang Y.; Chen Y.; Huang F.; Xu Y.; Li W.; Guo Y.; He Z.; Ren X.; Lu Y.; Yang K.; Cao S.; Lin H.; Cao R.; Yan P.; Cheng T.; Wang X.; Jiao S.; Xu D. Nat. Energy 2024, 9, 987. |
| [26] | Wang H.-S.; Yu Z.-A.; Kong X.; Sang C. K.; David T. B.; Qin J.; Bao Z.-N.; Cui Y. Joule 2022, 6, 588. |
/
| 〈 |
|
〉 |