共形二维材料: 创制与应用
收稿日期: 2024-07-17
网络出版日期: 2024-10-09
基金资助
国家自然科学基金(52272038); 国家自然科学基金(22309042); 国家万人计划和河南省中原英才计划的资助
Conformal Two-Dimensional Materials: Preparation and Applications
Received date: 2024-07-17
Online published: 2024-10-09
Supported by
National Natural Science Foundation of China(52272038); National Natural Science Foundation of China(22309042); National Young Top-Notch Talents of Ten-Thousand Talents Program and the Zhongyuan Talents Program of Henan Province
共形二维材料是指能与任意基底的表面形状“紧密贴合”的原子薄层材料, 它像薄膜一样紧密包覆于基底表面, 与基底表面轮廓融为一体, 进而形成一种新型的功能复合结构材料. 这种共形结构材料不仅继承了基底原始的表面形貌特征, 而且能将二维材料的新奇物性赋予基底材料而实现新的功能, 激发二维材料与基底相互作用下新的物理化学效应. 基底特殊结构的引入能够使二维材料超越二维空间的局限性, 将二维材料的平面结构与基底的任意曲面结构相结合, 是增强二维材料与外界物质相互作用的重要方式, 极大地拓展了二维材料的应用场景, 甚至可能实现其“杀手锏”应用. 本综述在提出共形二维材料概念的基础上, 阐明了二维材料共形生长的机制, 揭示了基底属性、结构对二维材料共形生长与共形度的影响规律, 探究了影响材料生长行为的热动力学因素与空间相平衡条件, 并分类综述了以基底的开放式结构和限域式结构为典型代表的共形二维材料的制备方法、性能与应用, 最后对该领域的挑战和未来发展方向做了展望.
刘卫涛 , 高战胜 , 黄明举 , 刘忠范 , 陈珂 . 共形二维材料: 创制与应用[J]. 化学学报, 2024 , 82(11) : 1162 -1179 . DOI: 10.6023/A24070219
Conformal two-dimensional materials refer to an atomically-thin layered material that can closely adhere on the surface of any substrate. It is tightly coated on the substrate surface like a thin film, along with the contour of the substrate surface, and thus forms a new type of functional composite structural material. This conformal structural material not only inherits the original surface morphological characteristics of the substrate, but also endows the substrate with novel physical properties of two-dimensional materials to achieve new functions and stimulate new physical and chemical effects under the interaction between two-dimensional materials and the substrate. The introduction of special substrate structures can enable two-dimensional materials to transcend the limitations of two-dimensional space. Combining the planar structure of two-dimensional materials with the arbitrary curved structure of the substrate is an important way to enhance interactions between two-dimensional materials and the surrounding environment, greatly expanding the application fields of two-dimensional materials, and may even achieve the killer applications. On the basis of proposing the concept of conformal two-dimensional materials, this article first elucidates the mechanism of conformal growth of two-dimensional materials, reveals the influence of substrate features and structures on the conformal growth and conformity of two-dimensional materials, as well as explores the thermodynamic factors and spatial equilibrium conditions that affect material growth behaviors. Second, it classifies and summarizes current progress on the preparation methods, properties, and applications of conformal two-dimensional materials represented by open and confined structures of substrates. Finally, the challenges and future development directions in this field are discussed.
[1] | Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.-e.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. |
[2] | Li, X.; Yu, J.; Wageh, S.; Al‐Ghamdi, A. A.; Xie, J. Small 2016, 12, 6640. |
[3] | Geim, A. K. Science 2009, 324, 1530. |
[4] | Seabra, A. B.; Paula, A. J.; de Lima, R.; Alves, O. L.; Duran, N. Chem. Res. Toxicol. 2014, 27, 159. |
[5] | Liu, Y.; Duan, X.; Huang, Y.; Duan, X. Chem. Soc. Rev. 2018, 47, 6388. |
[6] | Iqbal, M.; Elahi, E.; Amin, A.; Hussain, G.; Aftab, S. Superlattices Microstruct. 2020, 137, 106350. |
[7] | Wu, D.; Guo, C.; Zeng, L.; Ren, X.; Shi, Z.; Wen, L.; Chen, Q.; Zhang, M.; Li, X. J.; Shan, C.-X.; Jie, J. Light-Sci. Appl. 2023, 12, 5. |
[8] | Chin, H.-T.; Hofmann, M.; Huang, S.-Y.; Yao, S.-F.; Lee, J.-J.; Chen, C.-C.; Ting, C.-C.; Hsieh, Y.-P. npj 2D Mater. Appl. 2021, 5, 28. |
[9] | Moon, J.-Y.; Kim, D.-H.; Kim, S.-I.; Hwang, H.-S.; Choi, J.-H.; Hyeong, S.-K.; Ghods, S.; Park, H. G.; Kim, E.-T.; Bae, S. Matter 2022, 5, 3935. |
[10] | Ciarrocchi, A.; Avsar, A.; Ovchinnikov, D.; Kis, A. Nat. Commun. 2018, 9, 919. |
[11] | Ji, H. G.; Solis‐Fernandez, P.; Yoshimura, D.; Maruyama, M.; Endo, T.; Miyata, Y.; Okada, S.; Ago, H. Adv. Mater. 2019, 31, 1903613. |
[12] | Chen, P.; Pan, J.; Gao, W.; Wan, B.; Kong, X.; Cheng, Y.; Liu, K.; Du, S.; Ji, W.; Pan, C. Adv. Mater. 2022, 34, 2108615. |
[13] | Boyd, D.; Lin, W.-H.; Hsu, C.-C.; Teague, M.; Chen, C.-C.; Lo, Y.-Y.; Chan, W.-Y.; Su, W.-B.; Cheng, T.-C.; Chang, C.-S. Nat. Commun. 2015, 6, 6620. |
[14] | Wang, X.; Shi, G. Energy Environ. Sci. 2015, 8, 790. |
[15] | Han, T.-H.; Kim, H.; Kwon, S.-J.; Lee, T.-W. Adv. Mater. Sci. Eng. 2017, 118, 1. |
[16] | Gwon, H.; Kim, H.-S.; Lee, K. U.; Seo, D.-H.; Park, Y. C.; Lee, Y.-S.; Ahn, B. T.; Kang, K. Energy Environ. Sci. 2011, 4, 1277. |
[17] | Liao, L.; Peng, H.; Liu, Z. J. Am. Chem. Soc. 2014, 136, 12194. |
[18] | Sun, P.; Xiong, W.; Bera, A.; Timokhin, I.; Wu, Z.; Mishchenko, A.; Sellers, M.; Liu, B.; Cheng, H.; Janzen, E. PNAS 2023, 120, e2300481120. |
[19] | Fu, W.; Jiang, L.; van Geest, E. P.; Lima, L. M.; Schneider, G. F. Adv. Mater. 2017, 29, 1603610. |
[20] | Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. ACS Nano 2014, 8, 1102. |
[21] | Liu, B.; Abbas, A.; Zhou, C. Adv. Electronic. Mater. 2017, 3, 1700045. |
[22] | Liao, W.; Zhao, S.; Li, F.; Wang, C.; Ge, Y.; Wang, H.; Wang, S.; Zhang, H. Nanoscale Horiz. 2020, 5, 787. |
[23] | Chaves, A.; Azadani, J. G.; Alsalman, H.; Da Costa, D.; Frisenda, R.; Chaves, A.; Song, S. H.; Kim, Y. D.; He, D.; Zhou, J. npj 2D Mater. 2020, 4, 29. |
[24] | Kang, S.; Lee, D.; Kim, J.; Capasso, A.; Kang, H. S.; Park, J.-W.; Lee, C.-H.; Lee, G.-H. 2D Mater. 2020, 7, 022003. |
[25] | Shrivastava, M.; Ramgopal Rao, V. Nano Lett. 2021, 21, 6359. |
[26] | Nakano, M.; Wang, Y.; Kashiwabara, Y.; Matsuoka, H.; Iwasa, Y. Nano Lett. 2017, 17, 5595. |
[27] | Ma, Y.; Kolekar, S.; Coy Diaz, H.; Aprojanz, J.; Miccoli, I.; Tegenkamp, C.; Batzill, M. ACS Nano 2017, 11, 5130. |
[28] | Poh, S. M.; Zhao, X. X.; Tan, S. J. R.; Fu, D. Y.; Fei, W. W.; Chu, L. Q.; Dan, J. D.; Zhou, W.; Pennycook, S. J.; Neto, A. H. C.; Loh, K. P. ACS Nano 2018, 12, 7562. |
[29] | Poh, S. M.; Tan, S. J. R.; Zhao, X. X.; Chen, Z. X.; Abdelwahab, I.; Fu, D. Y.; Xu, H.; Bao, Y.; Zhou, W.; Loh, K. P. Adv. Mater. 2017, 29, 1605641. |
[30] | Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K. Nat. Nanotechnol. 2008, 3, 563. |
[31] | Ciesielski, A.; Samorì, P. Chem. Soc. Rev. 2014, 43, 381. |
[32] | Li, Z.; Young, R. J.; Backes, C.; Zhao, W.; Zhang, X.; Zhukov, A. A.; Tillotson, E.; Conlan, A. P.; Ding, F.; Haigh, S. J. ACS Nano 2020, 14, 10976. |
[33] | Coleman, J. N. Adv. Funct. Mater. 2009, 19, 3680. |
[34] | Grayfer, E. D.; Kozlova, M. N.; Fedorov, V. E. Adv. Colloid Interface Sci. 2017, 245, 40. |
[35] | Zhang, W.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. Adv. Mater. 2013, 25, 3456. |
[36] | Deng, B.; Liu, Z.; Peng, H. Adv. Mater. 2019, 31, 1800996. |
[37] | Deokar, G.; Avila, J.; Razado-Colambo, I.; Codron, J.-L.; Boyaval, C.; Galopin, E.; Asensio, M.-C.; Vignaud, D. Carbon 2015, 89, 82. |
[38] | Zhang, J.; Wang, F.; Shenoy, V. B.; Tang, M.; Lou, J. Mater Today 2020, 40, 132. |
[39] | Zhu, D.; Shu, H.; Jiang, F.; Lv, D.; Asokan, V.; Omar, O.; Yuan, J.; Zhang, Z.; Jin, C. npj 2D Mater. Appl. 2017, 1, 8. |
[40] | Dong, J.; Zhang, L.; Ding, F. Adv. Mater. 2019, 31, 1801583. |
[41] | Zhou, X.; Zhuge, F.; Wang, H.; Zhai, T. Chin. J. Chem. 2023, 41, 825. |
[42] | Xu, X.; Chen, Y.; Liu, P.; Luo, H.; Li, Z.; Li, D.; Wang, H.; Song, X.; Wu, J.; Zhou, X.; Zhai, T. Nat. Commun. 2024, 15, 4368. |
[43] | Liu, G.; Sun, Z.; Su, J. Chin. Sci. Bull. 2021, 66, 4036. |
[44] | Xu, X.; Zhang, Z.; Dong, J.; Yi, D.; Niu, J.; Wu, M.; Lin, L.; Yin, R.; Li, M.; Zhou, J. Chin. Sci. Bull. 2017, 62, 1074. |
[45] | Lin, L.; Zhang, J.; Su, H.; Li, J.; Sun, L.; Wang, Z.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. Nat. Commun. 2019, 10, 1912. |
[46] | Gao, L.; Guest, J. R.; Guisinger, N. P. Nano Lett. 2010, 10, 3512. |
[47] | Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W. Nano Lett. 2011, 11, 4547. |
[48] | Huang, M.; Ruoff, R. S. Acc. Chem. Res. 2020, 53, 800. |
[49] | Sutter, P.; Sadowski, J. T.; Sutter, E. Phys. Rev. B 2009, 80, 245411. |
[50] | Barin, G. B.; Song, Y.; de Fatima Gimenez, I.; Souza Filho, A. G.; Barreto, L. S.; Kong, J. Carbon 2015, 84, 82. |
[51] | Zhuang, B.; Li, S.; Li, S.; Yin, J. Carbon 2021, 173, 609. |
[52] | Zhan, Y.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Small 2011, 8, 966. |
[53] | Huang, M.; Deng, B.; Dong, F.; Zhang, L.; Zhang, Z.; Chen, P. Small Methods 2021, 5, 2001213. |
[54] | Li, S.; Ouyang, D.; Zhang, N.; Zhang, Y.; Murthy, A.; Li, Y.; Liu, S.; Zhai, T. Adv. Mater. 2023, 35, 2211855. |
[55] | Yan, Z.; Peng, Z.; Tour, J. M. Acc. Chem. Res. 2014, 47, 1327. |
[56] | Ji, Q.; Zhang, Y.; Gao, T.; Zhang, Y.; Ma, D.; Liu, M.; Chen, Y.; Qiao, X.; Tan, P. H.; Kan, M. Nano Lett. 2013, 13, 3870. |
[57] | Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lopez-Sanchez, O.; Krasnozhon, D.; Chen, M. W.; Gillet, P.; Morral, A. F. I.; Radenovic, A.; Kis, A. ACS Nano 2014, 9, 4611. |
[58] | Ji, Q.; Kan, M.; Zhang, Y.; Guo, Y.; Ma, D.; Shi, J.; Sun, Q.; Chen, Q.; Zhang, Y.; Liu, Z. Nano Lett. 2015, 15, 198. |
[59] | Yang, P.; Wang, D.; Zhao, X.; Quan, W.; Jiang, Q.; Li, X.; Tang, B.; Hu, J.; Zhu, L.; Pan, S. Nat. Commun. 2022, 13, 3238. |
[60] | Ju, M.; Liang, X.; Liu, J.; Zhou, L.; Liu, Z.; Mendes, R. G.; Ru?mmeli, M. H.; Fu, L. Chem. Mater. 2017, 29, 6095. |
[61] | Hoffman, J. J. D. J. Chem. Phys. 1958, 29, 1192. |
[62] | Anwar, J.; Zahn, D. Angew. Chem. Int. Ed. 2011, 50, 1996. |
[63] | Amini, S.; Abbaschian, R. Carbon 2013, 51, 110. |
[64] | Jung, Y. J.; Wei; Vajtai, R.; Ajayan, P. M.; Homma, Y.; Prabhakaran, K.; Ogino, T. Nano Lett. 2003, 3, 561. |
[65] | Jackson, K. Adv. Mater. Sci. Eng. 1984, 65, 7. |
[66] | Nancollas, G.; Purdie, N. Q. Rev. Chem. Soc. 1964, 18, 1. |
[67] | Undabeytia, T.; Nir, S.; Rytwo, G.; Serban, C.; Morillo, E.; Maqueda, C. Environ. Sci. Technol. 2002, 36, 2677. |
[68] | Coraux, J.; Engler, M.; Busse, C.; Wall, D.; Buckanie, N.; Zu Heringdorf, F.-J. M.; Van Gastel, R.; Poelsema, B.; Michely, T. New J. Phys. 2009, 11, 023006. |
[69] | Wu, P.; Zhang, W. H.; Li, Z. Y.; Yang, J. L. Small 2014, 10, 2136. |
[70] | Zhang, X.; Huangfu, L.; Gu, Z.; Xiao, S.; Zhou, J.; Nan, H.; Gu, X.; Ostrikov, K. Small 2021, 17, 2007312. |
[71] | Yan, C.; Gan, L.; Zhou, X.; Guo, J.; Huang, W.; Huang, J.; Jin, B.; Xiong, J.; Zhai, T.; Li, Y. Adv. Funct. Mater. 2017, 27, 1702918. |
[72] | Chen, C.-C.; Kuo, C.-J.; Liao, C.-D.; Chang, C.-F.; Tseng, C.-A.; Liu, C.-R.; Chen, Y.-T. Chem. Mater. 2015, 27, 6249. |
[73] | Kundu, P. K.; Cohen, I. M.; Dowling, D. R. In Fluid mechanics, Ed.: Merken, S., Elsevier, London, 2015, pp. 1-15. |
[74] | Munson, B. R.; Young, D.; Okiishi, T. Bernoulli Eqn. 2016, 23, 139. |
[75] | Knudsen, M.; Partington, J. R. J. Phys. Chem. 2002, 39, 307. |
[76] | Emyr, A.; Moelwyn, H. In Physical Chemistry, Ed.: Wheeler, D. R., Cambridge University Press, Cambridge, 2015, pp. 4-10. |
[77] | Halliday, D.; Resnick, R.; Krane, K. S. In Physics, Ed.: Sara Whight, H. N., Wiley, New York, 2002, pp. 635-652. |
[78] | Rosenberger, F. E. In Fundamentals of Crystal Growth I: Macroscopic Equilibrium and Transport Concepts, Ed.: Cardona, M., Springer Science & Business Media, Stuttgart, 2012, pp. 226-234. |
[79] | GokoGlu, S. A. J. Electrochem. Soc. 1988, 135, 1562. |
[80] | Hitchman, M. L. J. Cryst. Growth. 1980, 48, 394. |
[81] | Sneed, B. T.; Brodsky, C. N.; Kuo, C. H.; Lamontagne, L. K.; Jiang, Y.; Wang, Y.; Tao, F.; Huang, W.; Tsung, C. K. J. Am. Chem. Soc. 2013, 135, 14691. |
[82] | Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X.; Mavrikakis, M.; Xia, Y. N. Science 2015, 349, 412. |
[83] | Ye, H.; Wang, Q.; Catalano, M.; Lu, N.; Vermeylen, J.; Kim, M. J.; Liu, Y.; Sun, Y.; Xia, X. Nano Lett. 2016, 16, 2812. |
[84] | Wang, Z.; Luan, D.; Boey, F. Y. C.; Lou, X. W. J. Am. Chem. Soc. 2011, 133, 4738. |
[85] | Kuo, C. H.; Chu, Y. T.; Song, Y. F.; Huang, M. H. Adv. Funct. Mater. 2011, 21, 792. |
[86] | Lopez-Ortega, A.; Roca, A. G.; Torruella, P.; Petrecca, M.; Estrade, S.; Peiro, F.; Puntes, V.; Nogues, J. Chem. Mater. 2016, 28, 8025. |
[87] | Peng, S.; Sun, S. Angew. Chem. Int. Ed. 2007, 46, 4155. |
[88] | Zhang, Y.; Chen, S.; Radjenovic, P.; Bodappa, N.; Zhang, H.; Yang, Z. L.; Tian, Z.; Li, J. F. Anal. Bioanal.Chem. 2019, 91, 5316. |
[89] | Hwang, S. J.; Kim, S. K.; Lee, J. G.; Lee, S. C.; Jang, J. H.; Kim, P.; Lim, T. H.; Sung, Y. E.; Yoo, S. J. J. Am. Chem. Soc. 2012, 134, 19508. |
[90] | Kong, D.; Wang, H.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Nano Lett. 2013, 13, 1341. |
[91] | Peng, Z.; Jia, D.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. Adv. Energy. Mater. 2015, 5, 1. |
[92] | Zhang, Q.; Tan, S.; Mendes, R. G.; Sun, Z.; Chen, Y.; Kong, X.; Xue, Y.; Ruemmeli, M. H.; Wu, X.; Chen, S. Adv. Mater. 2016, 28, 2616. |
[93] | Tong, X.; Li, Y.; Ruan, Q.; Pang, N.; Zhou, Y.; Wu, D.; Xiong, D.; Xu, S.; Wang, L.; Chu, P. K. Adv. Sci. Lett. 2022, 9, 2104774. |
[94] | Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. J. Am. Chem. Soc. 2014, 136, 10053. |
[95] | Mi, Y.; Zhang, Z.; Zhao, L.; Zhang, S.; Chen, J.; Ji, Q.; Shi, J.; Zhou, X.; Wang, R.; Shi, J. Small 2017, 13, 1701694. |
[96] | Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. Nature 2010, 464, 392. |
[97] | Luo, Y.; Tang, L.; Khan, U.; Yu, Q.; Cheng, H. M.; Zou, X.; Liu, B. Nat. Commun. 2019, 10, 269. |
[98] | Zhang, Z.; Zhao, H.; Teng, Y.; Chang, X.; Xia, Q.; Li, Z.; Fang, J.; Du, Z.; Swierczek, K. Adv. Electronic. Mater. 2018, 8, 1700174. |
[99] | Qu, Y.; Medina, H.; Wang, S. W.; Wang, Y. C.; Chen, C. W.; Su, T. Y.; Manikandan, A.; Wang, K.; Shih, Y. C.; Chang, J. W. Adv. Mater. 2016, 28, 9831. |
[100] | Li, H.; Chen, S.; Zhang, Y.; Zhang, Q.; Jia, X.; Zhang, Q.; Gu, L.; Sun, X.; Song, L.; Wang, X. Nat. Commun. 2018, 9, 2452. |
[101] | Zhang, G.; Huo, J.; Wang, X.; Guo, S. Acta Chim. Sinica 2023, 81, 6 (in Chinese). |
[101] | (张国强, 霍京浩, 王鑫, 郭守武, 化学学报, 2023, 81, 6.) |
[102] | Pokroy, B.; Zolotoyabko, E. J. Mater. Chem. 2003, 13, 682. |
[103] | Fabritius, H. O.; Sachs, C.; Triguero, P. R.; Raabe, D. Adv. Mater. 2009, 21, 391. |
[104] | Studart, A. R. Chem. Soc. Rev. 2016, 45, 359. |
[105] | Ragni, R.; Cicco, S. R.; Vona, D.; Farinola, G. M. Adv. Mater. 2017, 30, 1704289. |
[106] | Zhang, C.; Mcadams, D. A.; Grunlan, J. C. Adv. Mater. 2016, 28, 6265. |
[107] | Knecht, L. D.; Pasini, P.; Daunert, S. Anal. Bioanal. Chem. 2011, 400, 977. |
[108] | Jiang, L.; Feng, L. In Bioinspired Intelligent Nanostructured Interfacial Materials, Ed.: Jiang, L., Chemical Industry Press, Beijing, 2015, pp. 107-116. |
[109] | Liu, M.; Wang, S.; Jiang, L. MRS Bull. 2013, 38, 375. |
[110] | Bao, Z.; Weatherspoon, M. R.; Shian, S.; Cai, Y.; Graham, P. D.; Allan, S. M.; Ahmad, G.; Dickerson, M. B.; Church, B. C.; Kang, Z. Nature 2007, 446, 172. |
[111] | Losic, D.; Yu, Y.; Aw, M. S.; Simovic, S.; Thierry, B.; Addai-Mensah, J. Chem. Commun. 2010, 46, 6323. |
[112] | Aw, M. S.; Simovic, S.; Yu, Y.; Addai-Mensah, J.; Losic, D. Powder Technol. 2012, 223, 52. |
[113] | Yu, Y.; Addai-Mensah, J.; Losic, D. Sci. Technol. Adv. Mater. 2012, 13, 015008. |
[114] | Jeffryes, C.; Campbell, J.; Li, H.; Jiao, J.; Rorrer, G. Energy Environ. Sci. 2011, 4, 3930. |
[115] | Chu, H.; Cao, D.; Dong, B.; Qiang, Z. Water Res. 2010, 44, 1573. |
[116] | Chen, P. Y.; Mckittrick, J.; Meyers, M. A. Prog. Mater. Sci. 2012, 57, 1492. |
[117] | Chen, K.; Li, C.; Shi, L.; Gao, T.; Liu, Z. Nat. Commun. 2016, 7, 13440. |
[118] | Zhu, L.; Huan, Y.; Zhang, Z.; Yang, P.; Hu, J.; Shi, Y.; Cui, F.; Zhang, Y. Energy Environ. Mater. 2023, 6, 150. |
[119] | Li, Q.; Song, Y.; Xu, R.; Zhang, L.; Gao, J.; Xia, Z.; Tian, Z.; Wei, N.; Rümmeli, M. H.; Zou, X. ACS Nano 2018, 12, 10240. |
[120] | Oaki, Y.; Kijima, M.; Imai, H. J. Am. Chem. Soc. 2011, 133, 8594. |
[121] | Liu, H.; Wang, X.; Cui, W.; Dou, Y.; Zhao, D.; Xia, Y. J. Mater. Chem. 2010, 20, 4223. |
[122] | Chen, K.; Li, C.; Chen, Z.; Shi, L.; Reddy, S.; Meng, H.; Ji, Q. Nano Res. 2016, 9, 249. |
[123] | Shi, L.; Chen, K.; Du, R.; Bachmatiuk, A.; Ruemmeli, M. H.; Xie, K.; Huang, Y.; Zhang, Y.; Liu, Z. J. Am. Chem. Soc. 2016, 138, 6360. |
[124] | Stockton, J.; Armen, M.; Mabuchi, H. J. Opt. Soc. Am. B 2002, 19, 3019. |
[125] | Bhattacharya, R.; Konar, S. J. Nanophotonics 2012, 6, 3520. |
[126] | Li, W.; Hao, Q.; Zhai, H.; Zeng, H.; Lu, W. Opt. Express. 2007, 15, 2354. |
[127] | Yu, H. C. Y.; Eijkelenborg, M. A. V.; Leonsaval, S. G.; Argyros, A.; Barton, G. W. Appl. Opt. 2008, 47, 6497. |
[128] | Doshi, R.; Day, P. J.; Carampin, P.; Blanch, E.; Stratford, I. J.; Tirelli, N. Anal. Bioanal. Chem. 2010, 396, 2331. |
[129] | Perez-Herrera, R. A.; Lopez-Amo, M. Opt. Fiber Technol. 2013, 19, 689. |
[130] | Chen, K.; Zhou, X.; Cheng, X.; Qiao, R.; Cheng, Y.; Liu, C.; Xie, Y.; Yu, W.; Yao, F.; Sun, Z. Nat. Photonics 2019, 13, 754. |
[131] | Cheng, Y.; Yu, W. T.; Xie, J.; Wang, R. Y.; Cui, G.; Cheng, X.; Li, M. W.; Wang, K.; Li, J. L.; Sun, Z. P.; Chen, K.; Liu, K. H.; Liu, Z. F. ACS Photonics 2022, 9, 961. |
[132] | Zuo, Y.; Yu, W.; Liu, C.; Cheng, X.; Qiao, R.; Liang, J.; Zhou, X.; Wang, J.; Wu, M.; Zhao, Y. Nat. Nanotechnol. 2020, 15, 987. |
[133] | Cheng, X.; Zhou, X.; Tao, L.; Yu, W.; Liu, C.; Cheng, Y.; Ma, C.; Shang, N.; Xie, J.; Liu, K. Nanoscale 2020, 12, 14472. |
[134] | Zhou, H. Q.; Yu, F.; Huang, Y. F.; Sun, J. Y.; Zhu, Z.; Nielsen, R. J.; He, R.; Bao, J. M.; Goddard, W. A.; Chen, S.; Ren, Z. F. Nat. Commun. 2016, 7, 12765. |
[135] | Yao, R. Q.; Shi, H.; Wan, W. B.; Wen, Z.; Lang, X. Y.; Jiang, Q. Adv. Mater. 2020, 32, 1907214. |
[136] | Al-Abawi, B. T.; Parveen, N.; Ansari, S. A. Sci. Rep. 2022, 12, 14413. |
[137] | Li, G.; Chang, Z.; Li, T.; Wang, K. Ionics 2019, 25, 5881. |
[138] | Wei, X.; Lin, C.-C.; Wu, C.; Qaiser, N.; Cai, Y.; Lu, A.-Y.; Qi, K.; Fu, J.-H.; Chiang, Y.-H.; Yang, Z. Nat. Commun. 2022, 13, 6006. |
[139] | You, B.; Jiang, N.; Sheng, M.; Bhushan, M. W.; Sun, Y. ACS Catalysis 2016, 6, 714. |
[140] | Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F. Nat. Mater. 2012, 11, 963. |
[141] | Xiao, X.; Beechem, T. E.; Brumbach, M. T.; Lambert, T. N.; Davis, D. J.; Michael, J. R.; Washburn, C. M.; Wang, J.; Brozik, S. M.; Wheeler, D. R. ACS Nano 2012, 6, 3573. |
[142] | Deng, J.; Li, H.; Wang, S.; Ding, D.; Chen, M.; Liu, C.; Tian, Z.; Novoselov, K.; Ma, C.; Deng, D. Nat. Commun. 2017, 8, 14430. |
[143] | Tan, Y.; Liu, P.; Chen, L.; Cong, W.; Ito, Y.; Han, J.; Guo, X.; Tang, Z.; Fujita, T.; Hirata, A. Adv. Mater. 2014, 26, 8023. |
[144] | An, W.; Gao, B.; Mei, S.; Xiang, B.; Fu, J.; Wang, L.; Zhang, Q.; Chu, P. K.; Huo, K. Nat. Commun. 2019, 10, 1447. |
[145] | Sha, J.; Li, Y.; Villegas Salvatierra, R.; Wang, T.; Dong, P.; Ji, Y.; Lee, S.-K.; Zhang, C.; Zhang, J.; Smith, R. H. ACS Nano 2017, 11, 6860. |
[146] | Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Chem. Phys. Lett. 1974, 26, 163. |
[147] | Jeanmaire, D. L.; Van Duyne, R. P. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1. |
[148] | Moskovits, M. Rev. Mod. Phys. 1985, 57, 783. |
[149] | Dong, J.-C.; Zhang, X.-G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z.-L.; Wu, D.-Y.; Feliu, J. M.; Williams, C. T. Nat. Energy. 2019, 4, 60. |
[150] | Xie, Y.; Liu, S.; Huang, K.; Chen, B.; Shi, P.; Chen, Z.; Liu, B.; Liu, K.; Wu, Z.; Chen, K. Adv. Mater. 2022, 34, 2202982. |
[151] | Knight, J. C.; Broeng, J.; Birks, T. A.; Russell, P. S. J. Science 1998, 282, 1476. |
[152] | Cregan, R.; Mangan, B.; Knight, J.; Birks, T.; Russell, P. S. J.; Roberts, P.; Allan, D. Science 1999, 285, 1537. |
[153] | Russell, P. Science 2003, 299, 358. |
[154] | Wadsworth, W. J.; Ortigosa-Blanch, A.; Knight, J. C.; Birks, T. A.; Man, T.-P. M.; Russell, P. S. J. JOSA B. 2002, 19, 2148. |
[155] | Ni, Y.; Zhang, L.; An, L.; Peng, J.; Fan, C. IEEE Photonics Technol. Lett. 2004, 16, 1516. |
[156] | Knight, J.; Skryabin, D. Opt. Express. 2007, 15, 15365. |
[157] | Zhao, X.; Zhou, G.; Li, S.; Liu, Z.; Wei, D.; Hou, Z.; Hou, L. Appl. Opt. 2008, 47, 5190. |
[158] | Buczynski, R.; Bookey, H.; Pysz, D.; Stepien, R.; Kujawa, I.; McCarthy, J.; Waddie, A.; Kar, A.; Taghizadeh, M. Laser Phys. Lett. 2010, 7, 666. |
[159] | Habib, M. S.; Habib, M. S.; Razzak, S. A.; Hossain, M. A. Opt. Fiber Technol. 2013, 19, 461. |
[160] | Xu, H.; Kong, Q.; Zhou, C. Opt. Fiber Technol. 2021, 63, 102485. |
[161] | Tan, T.; Jiang, X.; Wang, C.; Yao, B.; Zhang, H. Adv. Sci. 2020, 7, 2000058. |
[162] | Yun, Q.; Li, L.; Hu, Z.; Lu, Q.; Chen, B.; Zhang, H. Adv. Mater. 2020, 32, 1903826. |
[163] | Guo, Y.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. Adv. Mater. 2019, 31, 1807134. |
[164] | Duan, X.; Xu, J.; Wei, Z.; Ma, J.; Guo, S.; Liu, H.; Dou, S. Small Methods 2017, 1, 1700156. |
[165] | Muska, M.; Wang, Y.; Yang, J.; Ma, L.; Xu, Q.; Ding, H.; Zhu, J.; Yang, Q. ACS Appl. Nano Mater. 2022, 5, 6410. |
[166] | Zhu, L.; Yang, P.; Huan, Y.; Zhou, F.; Zhang, Y. Adv. Energ. Sust. Res. 2021, 2, 2100089. |
[167] | Chen, K.; Zhang, F.; Sun, J.; Li, Z.; Zhang, L.; Bachmatiuk, A.; Zou, Z.; Chen, Z.; Zhang, L.; Rummeli, M. H. Energy Storage Mater. 2018, 12, 110. |
[168] | Song, R.; Zhao, M.; Wang, S.; Lu, Y.; Bao, X.; Luo, Q.; Gou, L.; Fan, X.; Li, D. Acta Chim. Sinica 2024, 82, 426 (in Chinese). |
[168] | (宋瑞, 赵铭钦, 王帅, 卢垚, 鲍晓冰, 罗巧梅, 苟蕾, 樊小勇, 李东林, 化学学报, 2024, 82, 426.) |
[169] | Jia, H.; Li, X.; Song, J.; Zhang, X.; Luo, L.; He, Y.; Li, B.; Cai, Y.; Hu, S.; Xiao, X. Nat. Commun. 2020, 11, 1474. |
[170] | Diab, M.; Shreteh, K.; Afik, N.; Volokh, M.; Abramovich, S.; Abdu, U.; Mokari, T. Adv. Sustain. Syst. 2018, 2, 1800001. |
[171] | Weatherspoon, M. R.; Dickerson, M. B.; Wang, G.; Cai, Y.; Shian, S.; Jones, S. C.; Marder, S. R.; Sandhage, K. H. Angew. Chem. Int. Ed. 2007, 46, 5724. |
/
〈 |
|
〉 |