研究论文

梯度多孔结构设计提升高镍层状氧化物正极材料高压循环稳定性

  • 王舒玮 ,
  • 张建勋 ,
  • 成业 ,
  • 章立寒 ,
  • 田华军 ,
  • 李宝华
展开
  • a 华北电力大学电站能量传递转化与系统教育部重点实验室 北京 102206
    b 清华大学深圳国际研究生院 深圳 518055
    c 深圳市下一代动力与储能电池关键技术工程研究中心 深圳 518055
    d 矿冶科技集团有限公司 北京 100160
    e 北京工业大学材料科学与工程学院 北京 100124

收稿日期: 2024-08-17

  网络出版日期: 2024-10-11

基金资助

国家自然科学基金(52302249); 国家自然科学基金(12304003); 国家自然科学基金(52072208); 国家自然科学基金(52261160384); 国家自然科学基金(22379085); 国家自然科学基金(52302278)

Gradient-porous-structured Ni-rich Layered Oxide Cathodes Improve the High Voltage Cycling Stability

  • Shuwei Wang ,
  • Jianxun Zhang ,
  • Ye Cheng ,
  • Lihan Zhang ,
  • Huajun Tian ,
  • Baohua Li
Expand
  • a Key Laboratory of Power Station Energy Transfer Conversion and Systems Ministry of Education, North China Electric Power University, Beijing 102206, China
    b Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
    c Shenzhen Engineering Research Center on Key Technology of Next-Generation Power and Energy-Storage Battery, Shenzhen 518055, China
    d BGRIMM Technology Group, Beijing 100160, China
    e College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China

Received date: 2024-08-17

  Online published: 2024-10-11

Supported by

National Natural Science Foundation of China(52302249); National Natural Science Foundation of China(12304003); National Natural Science Foundation of China(52072208); National Natural Science Foundation of China(52261160384); National Natural Science Foundation of China(22379085); National Natural Science Foundation of China(52302278)

摘要

高镍层状氧化物(LiNixCoyMn1-x-yO2, x≥0.8, NCM)由于其具有较低的生产成本、较高的能量密度和工作电压, 是下一代高能量密度锂离子电池的重要正极材料. 然而, 由于锂化/去锂化时高镍正极材料内部应变累积和颗粒破裂, 导致其高压循环稳定性受二次颗粒机械失效的严重影响, 限制其大规模的应用. 本工作报道了一种简单的共沉淀合成方法, 成功地将梯度分布的孔结构引入到多晶NCM二次颗粒中, 可以有效地缓解NCM一次颗粒中各向异性带来的体积变化、抑制晶间裂纹和晶内裂纹, 同时减缓阻抗增加. 此梯度多孔结构的高镍NCM正极材料可以充电到4.5 V的高电压, 同时具有180.1 mAh•g−1 (1 C, 25 ℃)的超高比容量, 在充放电循环300次后仍有87.6%的容量保持率. 而且, 该正极材料在-20~60 ℃的宽温度范围内, 都能表现出高的可逆容量和显著增强的循环稳定性. 这项研究表明, 梯度多孔结构设计能够有效均匀化应力分布, 有望解决高镍层状氧化物高压循环过程的结构不稳定性, 该方法简单可行, 易于大规模工业化.

本文引用格式

王舒玮 , 张建勋 , 成业 , 章立寒 , 田华军 , 李宝华 . 梯度多孔结构设计提升高镍层状氧化物正极材料高压循环稳定性[J]. 化学学报, 2024 , 82(11) : 1134 -1141 . DOI: 10.6023/A24080241

Abstract

Nickel-rich layered oxides (LiNixCoyMn1-x-yO2, x≥0.8, NCM) are the most promising cathode material for next-generation high-energy batteries owing to their low production cost, high specific capacity and high operating voltage. However, the practical deployment of high-voltage NCM cathodes is still plagued by mechanical failure of NCM secondary particles due to the internal strain accumulation and particle crack during (de)lithiation. Herein, we report a convenient coprecipitation strategy to introduce gradient porous structure into the polycrystalline NCM secondary particles. Through multistage micro- and nanostructural tailoring from hydroxide precursor in coprecipitation process to the lithiated oxide during the lithiation stage, which refers to optimal engineering of the precursor micro- and nano-structure by introducing extra organic polymer (polystyrene-acrylonitrile copolymer) as heterogeneous nucleation seeds and alkyl diphenyl ether disulfonate disodium as dispersants, we optimize the primary particle morphology containing nano-voids and secondary particle containing gradient porous structure of the cathode. Through high-resolution aberration-corrected scanning transmission electron microscopy and scanning electron microscopy, the detailed gradient porous structure of the as-obtained nickel-rich layered oxide cathode is clarified, and the formation of gradient porous structure is attributed to the rapid diffusion of the carbonized organic matter by the calcination treatment under oxygen atmosphere during the lithiation stage. This gradient-porous- structured nickel-rich layered oxide cathode can mitigate the anisotropic volume change of the primary particles, suppress intergranular/intragranular cracks and limit impedance growth effectively. The as-obtained cathode exhibits high specific capacity of 180.1 mAh•g−1 (1 C, 25 ℃) and capacity retention of 87.6% after 300 cycles even charged to a high cut-off voltage of 4.5 V. Moreover, this cathode presents enhanced high reversible capacity and cycling stability in a wide temperature range of -20~60 ℃. This study suggests the gradient porous structure design can homogenize stress distribution and mitigate volumetric change, representing a promising pathway to tackle the structural instability upon high-voltage cycling.

参考文献

[1]
Dong, Y.; Li, J. Chem. Rev. 2022, 123, 811.
[2]
Liu, J.; Wang, J.; Ni, Y.; Zhang, K.; Cheng, F.; Chen, J. Mater. Today 2021, 43, 132.
[3]
Wang, Q.; Yao, Z.; Wang, J.; Guo, H.; Li, C.; Zhou, D.; Bai, X.; Li, H.; Li, B.; Wagemaker, M.; Zhao, C. Nature 2024, 629, 341.
[4]
Zheng, Z.; Wu, Z, G.; Xiang, W.; Guo, X. D. Acta Chim. Sinica 2017, 75, 501 (in Chinese).
[4]
(郑卓, 吴振国, 向伟, 郭孝东, 化学学报, 2017, 75, 501.)
[5]
Gao, Z.; Zhao, C.; Zhou, K.; Wu, J.; Tian, Y.; Deng, X.; Zhang, L.; Lin, K.; Kang, F.; Peng, L.; Wagemaker, M.; Li, B. Nat. Commun. 2024, 15, 1503.
[6]
Huang, Z.; Chen, Z.; Yang, M.; Chu, M.; Li, Z.; Deng, S.; He, L.; Jin, L.; Dunin-Borkowski, R. E.; Wang, R.; Wang, J.; Yang, T.; Xiao, Y. Energy Environ. Sci. 2024, DOI: 10.1039/D4EE01777C.
[7]
Yan, P.; Zheng, J.; Gu, M.; Xiao, J.; Zhang, J.-G.; Wang, C.-M. Nat. Commun. 2017, 8, 14101.
[8]
Yan, P.; Zheng, J.; Liu, J.; Wang, B.; Cheng, X.; Zhang, Y.; Sun, X.; Wang, C.; Zhang, J.-G. Nat. Energy 2018, 3, 600.
[9]
Juelsholt, M.; Chen, J.; Pérez-Osorio, M. A.; Rees, G. J.; De Sousa Coutinho, S.; Maynard-Casely, H. E.; Liu, J.; Everett, M.; Agrestini, S.; Garcia-Fernandez, M.; Zhou, K.-J.; House, R. A.; Bruce, P. G. Energy Environ. Sci. 2024, 17, 2530.
[10]
Lee, D.-H.; Gong, M.; Lee, E.; Seo, D.-H. Joule 2023, 7, 1408.
[11]
Lin, L.; Zhang, L.; Fu, Z.; Lou, J.; Gao, Z.; Wu, J.; Li, C.; Han, C.; Zhou, D.; Wang, Z.; Li, B. Adv. Mater. 2024, 30, 2003619.
[12]
Zhang, L.; Wang, S.; Zhu, L.; He, L.; He, S.; Qin, X.; Zhao, C.; Kang, F.; Li, B. Nano Energy 2022, 97, 107119.
[13]
Zhang, L.; Zhao, C.; Qin, X.; Wang, S.; He, L.; Qian, K.; Han, T.; Yang, Z.; Kang, F.; Li, B. Small 2021, 17, 2102055.
[14]
Zhao, C.; Wang, C.; Liu, X.; Hwang, I.; Li, T.; Zhou, X.; Diao, J.; Deng, J.; Qin, Y.; Yang, Z.; Wang, G.; Xu, W.; Sun, C.; Wu, L.; Cha, W.; Robinson, I.; Harder, R.; Jiang, Y.; Bicer, T.; Li, J.-T.; Lu, W.; Li, L.; Liu, Y.; Sun, S.-G.; Xu, G.-L.; Amine, K. Nat. Energy 2024, 9, 345.
[15]
Wang, Z.; Wei, W.; Han, Q.; Zhu, H.; Chen, L.; Hu, Y.; Jiang, H.; Li, C. ACS Nano 2023, 17, 17095.
[16]
Ryu, H.-H.; Lim, H.-W.; Lee, S. G.; Sun, Y.-K. Nat. Energy 2023, 9, 47.
[17]
Tan, S.; Shadike, Z.; Li, J.; Wang, X.; Yang, Y.; Lin, R.; Cresce, A.; Hu, J.; Hunt, A.; Waluyo, I.; Ma, L.; Monaco, F.; Cloetens, P.; Xiao, J.; Liu, Y.; Yang, X.-Q.; Xu, K.; Hu, E. Nat. Energy 2022, 7, 484.
[18]
Li, T. X.; Li, D. L.; Zhang, Q. B.; Gao, J. X.; Kong, X. Z.; Fan, X. Y.; Gou, L. Acta Chim. Sinica 2021, 79, 678 (in Chinese).
[18]
(李童心, 李东林, 张清波, 高建行, 孔祥泽, 樊小勇, 苟蕾, 化学学报, 2021, 79, 678.)
[19]
Yoon, M.; Dong, Y.; Hwang, J.; Sung, J.; Cha, H.; Ahn, K.; Huang, Y.; Kang, S. J.; Li, J.; Cho, J. Nat. Energy 2021, 6, 362.
[20]
Wang, C.; Wang, X.; Zhang, R.; Lei, T.; Kisslinger, K.; Xin, H. L. Nat. Mater. 2023, 22, 235.
[21]
Hyun, H.; Yoon, H.; Choi, S.; Kim, J.; Kim, S. Y.; Regier, T.; Arthur, Z.; Kim, S.; Lim, J. Energy Environ. Sci. 2023, 16, 3968.
[22]
Xue, W.; Huang, M.; Li, Y.; Zhu, Y. G.; Gao, R.; Xiao, X.; Zhang, W.; Li, S.; Xu, G.; Yu, Y.; Li, P.; Lopez, J.; Yu, D.; Dong, Y.; Fan, W.; Shi, Z.; Xiong, R.; Sun, C.-J.; Hwang, I.; Lee, W.-K.; Shao-Horn, Y.; Johnson, J. A.; Li, J. Nat. Energy 2021, 6, 495.
[23]
Meng, X.-H.; Lin, T.; Mao, H.; Shi, J.-L.; Sheng, H.; Zou, Y.-G.; Fan, M.; Jiang, K.; Xiao, R.-J.; Xiao, D.; Gu, L.; Wan, L.-J.; Guo, Y.-G. J. Am. Chem. Soc. 2022, 144, 11338.
[24]
Park, G.-T.; Yoon, D. R.; Kim, U.-H.; Namkoong, B.; Lee, J.; Wang, M. M.; Lee, A. C.; Gu, X. W.; Chueh, W. C.; Yoon, C. S.; Sun, Y.-K. Energy Environ. Sci. 2021, 14, 6616.
[25]
Scharf, J.; Chouchane, M.; Finegan, D. P.; Lu, B.; Redquest, C.; Kim, M.-c.; Yao, W.; Franco, A. A.; Gostovic, D.; Liu, Z.; Riccio, M.; Zelenka, F.; Doux, J.-M.; Meng, Y. S. Nat. Nanotech. 2022, 17, 446.
[26]
Park, G.-T.; Park, N.-Y.; Noh, T.-C.; Namkoong, B.; Ryu, H.-H.; Shin, J.-Y.; Beierling, T.; Yoon, C. S.; Sun, Y.-K. Energy Environ. Sci. 2021, 14, 5084.
[27]
Han, G.-M.; Kim, Y.-S.; Ryu, H.-H.; Sun, Y.-K.; Yoon, C. S. ACS Energy Lett. 2022, 7, 2919.
[28]
Ni, L.; Guo, R.; Fang, S.; Chen, J.; Gao, J.; Mei, Y.; Zhang, S.; Deng, W.; Zou, G.; Hou, H.; Ji, X. eScience 2022, 2, 116.
[29]
Sun, Y.; Huang, W.; Zhao, G.; Liu, Q.; Duan, L.; Wang, S.; An, Q.; Wang, H.; Yang, Y.; Zhang, C.; Guo, H. ACS Energy Lett. 2023, 8, 1629.
[30]
Meng, X.-H.; Zhang, X.-D.; Sheng, H.; Fan, M.; Lin, T.; Xiao, D.; Tian, J.; Wen, R.; Liu, W.-Z.; Shi, J.-L.; Wan, L.-J.; Guo, Y.-G. Angew. Chem. Int. Ed. 2023, 62, e202302170.
[31]
Li, F.; Liu, Z.; Liao, C.; Xu, X.; Zhu, M.; Liu, J. ACS Energy Lett. 2023, 8, 4903.
[32]
Yang, S.-Y.; Shadike, Z.; Wang, W.-W.; Yue, X.-Y.; Xia, H.-Y.; Bak, S.-M.; Du, Y.-H.; Li, H.; Fu, Z.-W. Energy Stor. Mater. 2022, 45, 1165.
[33]
Wu, F.; Zhou, D.; Zhang, L.; Bin, W.; Gao, Z.; Deng, X.; Ruan, L.; Zhao, C.; Kang, F.; Li, B. J. Mater. Chem. A 2022, 10, 11437.
[34]
Park, C. W.; Lee, J.-H.; Seo, J. K.; Jo, W. Y.; Whang, D.; Hwang, S. M.; Kim, Y.-J. Nat. Commun. 2021, 12, 2145.
[35]
Zou, L.; Li, J.; Liu, Z.; Wang, G.; Manthiram, A.; Wang, C. Nat. Commun. 2019, 10, 3447.
[36]
Wang, Z.; Zhang, B. Energy Mater. Dev. 2023, 1, 9370003.
[37]
Cheng, X.; Li, Y.; Cao, T.; Wu, R.; Wang, M.; Liu, H.; Liu, X.; Lu, J.; Zhang, Y. ACS Energy Lett. 2021, 6, 1703.
[38]
Stallard, J. C.; Wheatcroft, L.; Booth, S. G.; Boston, R.; Corr, S. A.; De Volder, M. F. L.; Inkson, B. J.; Fleck, N. A. Joule 2022, 6, 984.
[39]
Peng, F.; Zhang, L.; Yang, G.; Li, Y.; Pan, Q.; Li, Y.; Hu, S.; Zheng, F.; Wang, H.; Li, Q. Chem. Eng. J. 2023, 451, 138911.
[40]
Lin, R.; Bak, S.-M.; Shin, Y.; Zhang, R.; Wang, C.; Kisslinger, K.; Ge, M.; Huang, X.; Shadike, Z.; Pattammattel, A.; Yan, H.; Chu, Y.; Wu, J.; Yang, W.; Whittingham, M. S.; Xin, H. L.; Yang, X.-Q. Nat. Commun. 2021, 12, 2350.
[41]
Kim, U.-H.; Park, G.-T.; Conlin, P.; Ashburn, N.; Cho, K.; Yu, Y.-S.; Shapiro, D. A.; Maglia, F.; Kim, S.-J.; Lamp, P.; Yoon, C. S.; Sun, Y.-K. Energy Environ. Sci. 2021, 14, 1573.
[42]
Yan, P.; Zheng, J.; Zhang, J.-G.; Wang, C. Nano Lett. 2017, 17, 3946.
文章导航

/