综述

固体酸催化剂的研究进展

  • 张宇 ,
  • 张睿 ,
  • 王子健 ,
  • 汪啸 ,
  • 宋术岩 ,
  • 张洪杰
展开
  • a 中国科学院长春应用化学研究所稀土资源利用国家重点实验室 长春 130022
    b 中国科学技术大学应用化学与工程学院 合肥 230026
    c 清华大学化学系 北京 100084

张宇, 男, 中国科学院长春应用化学研究所2024级硕士研究生, 研究方向为稀土基催化纳米材料在非均相催化反应中的应用.

张睿, 男, 中国科学院长春应用化学研究所2022级博士研究生, 研究方向为稀土基催化纳米材料在非均相催化反应中的应用.

汪啸, 男, 中国科学院长春应用化学研究所研究员. 2008年毕业于吉林大学化学系, 获理学学士学位. 随后, 他加入了中国科学院长春应用化学研究所张洪杰研究员的课题组, 并于2013年获得无机化学博士学位. 主要从事制备用于异相催化反应和能源相关应用的功能无机材料.

宋术岩, 男, 中国科学院长春应用化学研究所研究员. 2003年毕业于东北师范大学化学系, 获理学学士学位; 2006年毕业于东北师范大学无机化学系, 获理学硕士学位. 他加入了中国科学院长春应用化学研究所张洪杰教授的研究组, 并于 2009年获得无机化学博士学位. 主要从事开发用于异相催化、质子传导、化学传感和检测的多孔功能材料.

张洪杰, 男, 中国科学院长春应用化学研究所研究员. 于1978年获得北京大学理学学士学位. 之后, 他在长春应用化学研究所担任研究助理, 并于1985年获得无机化学硕士学位, 并在该研究所担任助教至1989年. 之后, 他在波尔多第一大学、法国国家科学研究中心固体化学实验室学习, 并于1993年获得固体化学和材料科学博士学位. 1994年, 他加入中国科学院长春应用化学研究所, 担任研究员. 他目前的研究方向主要集中在镧系元素功能纳米材料方面.

收稿日期: 2024-09-24

  网络出版日期: 2024-11-14

基金资助

国家科技重大专项基金(2022YFB350400); 国家自然科学基金(22020102003); 国家自然科学基金(22025506); 国家自然科学基金(22271274); 国家自然科学基金(U23A20140); 吉林省科技发展计划项目(20230101022JC)

Current Advances of Solid Acid Catalysts

  • Yu Zhang ,
  • Rui Zhang ,
  • Zijian Wang ,
  • Xiao Wang ,
  • Shuyan Song ,
  • Hongjie Zhang
Expand
  • a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
    b School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026
    c Department of Chemistry, Tsinghua University, Beijing 100084
These authors contributed equally to this work

Received date: 2024-09-24

  Online published: 2024-11-14

Supported by

National Science and Technology Major Project of China(2022YFB350400); National Natural Science Foundation of China(22020102003); National Natural Science Foundation of China(22025506); National Natural Science Foundation of China(22271274); National Natural Science Foundation of China(U23A20140); Jilin Province Science and Technology Development Plan Project(20230101022JC)

摘要

固体酸是一类制备过程简单、环境污染小且催化活性高的催化材料, 在烷基化、异构化和酯化反应等多种化学过程中表现出卓越的催化活性. 然而, 其稳定性不足和再生活性低下的问题, 很大程度上制约了其在大规模工业生产中的应用. 因此, 开发兼具高活性和高稳定性的新型固体酸催化剂具有极其重要的研究价值和意义. 本综述介绍了常用固体酸催化剂的概念、分类、合成方法以及表征技术, 并引入一些经过稀土改性的固体酸催化剂的应用研究进展. 本综述主要着重于研究固体酸催化剂酸性质对于催化性能的影响(如酸强度、酸含量、酸位点种类等), 而不是传统的物化性质(如比表面积、晶相、表面形貌等). 最后, 对固体酸催化剂的发展前景进行了展望.

本文引用格式

张宇 , 张睿 , 王子健 , 汪啸 , 宋术岩 , 张洪杰 . 固体酸催化剂的研究进展[J]. 化学学报, 2025 , 83(2) : 152 -169 . DOI: 10.6023/A24090289

Abstract

With the increasing awareness of environmental protection and the in-depth implementation of sustainable development strategies, the commonly used liquid acid catalysts in traditional chemical production processes are facing the pressure of elimination or substitution due to their high corrosiveness, difficulty in recycling and potential environmental impact. Solid acids, renowned for their straightforward preparation, minimal ecological footprint, and exceptional catalytic prowess, have become the focus of scientific research and industrial attention. Currently, solid acid catalysts have been proven to be efficient in catalyzing diverse chemical reactions such as alkylation, isomerization, and esterification reactions. Nevertheless, their extensive industrial adoption is significantly hindered by the challenges of suboptimal stability and limited reusability. Developing advanced solid acid catalysts with high activity and stability is of great value and significance in both theoretical research and experimental exploration. A significant amount of notable fundamental research has been devoted to overcoming these limitations, and this review summarizes the scientific and technological work dedicated to preparing efficient solid acid catalysts. At the same time, we highlight the importance of rare earth elements for modification of solid acid catalysts due to their unique multi-electronic bonding and coordinated variability nature, which can have a positive effect on the structural evolution of acid catalysts, thereby improving the activity and stability of solid acid catalysts. This review initially presents concept, classification, synthesis methods and characterization of commonly used solid acid catalysts. Beyond that, we introduce the represented research progress of rare earth elements modified solid acid catalysts. The main emphasis of this review is investigating the contribution of acid properties to the catalytic performance (e.g., acid strength, acid content, type of acid sites, etc.), rather than the traditional physical and chemical properties (e.g., specific surface area, crystalline structure, morphology, etc.). Finally, we present the challenges of the existing catalytic systems and prospects of this field.

参考文献

[1]
Qin, R. Z.; Zeng, H. C. Adv. Funct. Mater. 2019, 29, 1903264.
[2]
Ly, I.; Layan, E.; Picheau, E.; Chanut, N.; Nallet, F.; Bentaleb, A.; Dourges, M.-A.; Pellenq, R.; Hillard, E.; Toupance, T. ACS Appl. Mater. Interfaces 2022, 14, 13305.
[3]
Brzeski, J.; Skurski, P. Heliyon 2019, 5, e02133.
[4]
Kirdant, S. P.; Biradar Tamboli, A. T.; Jadhav, V. H. Helv. Chim. Acta 2022, 105, e202200032.
[5]
Kore, R.; Scurto, A. M.; Shiflett, M. B. Ind. Eng. Chem. Res. 2020, 59, 15811.
[6]
Zhang, L.; Long, B. ACS Omega 2019, 4, 18996.
[7]
Singhal, S.; Agarwal, S.; Singh, M.; Rana, S.; Arora, S.; Singhal, N. J. Mol. Liq. 2019, 285, 299.
[8]
Bayat, M.; Gheidari, D. Chemistryselect 2022, 7, e202200774.
[9]
H?pfl, V. B.; Schachtl, T.; Liu, Y.; Lercher, J. A. Ind. Eng. Chem. Res. 2022, 61, 330.
[10]
Mu, J. L.; Liang, M. F.; Huang, H.; Meng, J.; Xu, L. L.; Song, Z. L.; Wu, M.; Miao, Z. C.; Zhuo, S. P.; Zhou, J. RSC Adv. 2022, 12, 9310.
[11]
Jiang, L.; Fan, Y. Q.; Zhang, X. X.; Pei, Y.; Yan, S. R.; Qiao, M. H.; Fan, K. N.; Zong, B. N. Acta Chim. Sinica 2023, 81, 231 (in Chinese).
[11]
(姜兰, 范义秋, 张晓昕, 裴燕, 闫世润, 乔明华, 范康年, 宗保宁, 化学学报, 2023, 81, 231.)
[12]
Cai, X. L. M.S. Thesis, Guangdong University of Technology, Guangzhou, 2016 (in Chinese).
[12]
(蔡晓兰, 硕士论文,广东工业大学, 广州, 2016.)
[13]
Munyentwali, A.; Li, H.; Yang, Q. H. Appl. Catal., A 2022, 633, 118525.
[14]
?nan, B.; Ko?er, A. T.; ?z?imen, D. B. J. Anal. Appl. Pyrolysis 2023, 173, 106095.
[15]
Zhang, Q. F.; Xie, W. L.; Li, J. B.; Guo, L. H. Renewable Energy 2023, 217, 119144.
[16]
Duan, X. X.; Wang, H. Y.; Pan, D. H.; Chen, S. W.; Yu, F.; Yan, X. L.; Li, R. F. Acta Chim. Sinica 2024, 82, 755 (in Chinese).
[16]
(段晓宣, 王恒燕, 潘大海, 陈树伟, 于峰, 闫晓亮, 李瑞丰, 化学学报, 2024, 82, 755.)
[17]
Esmi, F.; Borugadda, V. B.; Dalai, A. K. Catal. Today 2022, 404, 19.
[18]
Tang, S. Y.; Duan, X. L.; Zhang, Q. Y.; Wang, C. W.; Wang, W. G.; Feng, W. L.; Wang, T. L. Biomass Convers. Biorefin. 2022, 14, 2311.
[19]
Pasupulety, N.; Al-zahrani, A. A.; Daous, M. A.; Driss, H.; Alhumade, H. Fuel 2022, 324, 124513.
[20]
Changmai, B.; Vanlalveni, C.; Ingle, A. P.; Bhagat, R.; Rokhum, L. RSC Adv. 2020, 10, 41625.
[21]
álvarez, M.; Cueto, J.; Serrano, D. P.; Marín, P.; Ordó?ez, S. Catal. Today 2024, 428, 114464.
[22]
Lani, N. S.; Ngadi, N. Appl. Nanosci. 2022, 12, 3755.
[23]
Oishi, R.; Li, D. X.; Okazaki, M.; Kinoshita, H.; Ochiai, N.; Yamauchi, N.; Kobayashi, Y.; Wakihara, T.; Okubo, T.; Tada, S.; Iyoki, K. J. CO2 Util. 2023, 72, 102491.
[24]
Wang, Y.; Dai, Y. N.; Wang, T. H.; Li, M. L.; Zhu, Y.; Zhang, L. P. Fuel Process. Technol. 2022, 237, 107472.
[25]
Xing, X. Y.; Shi, X.; Ruan, M. Y.; Wei, Q. C.; Guan, Y.; Gao, H.; Xu, S. Q. Int. J. Biol. Macromol. 2023, 242, 125037.
[26]
Gromov, N. V.; Ogorodnikova, O. L.; Medvedeva, T. B.; Panchenko, V. N.; Yakovleva, I. S.; Isupova, L. A.; Timofeeva, M. N.; Taran, O. P.; Aymonier, C.; Parmon, V. N. Catalysts 2023, 13, 1298.
[27]
Huang, H.; Mu, J. L.; Liang, M. F.; Qi, R. R.; Wu, M.; Xu, L. L.; Xu, H. M.; Zhao, J. P.; Zhou, J.; Miao, Z. C. Mol. Catal. 2024, 552, 113682.
[28]
Ishitani, H.; Takeno, K.; Sasaya, M.; Kobayashi, S. Catal. Sci. Technol. 2023, 13, 5536.
[29]
Matsuhashi, H. Catal. Surv. Asia 2023, 27, 132.
[30]
Ren, Q. H.; Ma, H.; Wang, W. B.; Chen, C. C.; Xiao, J. B.; Che, P. H.; Nie, X.; Huang, Y. Z.; Rao, K. T. V.; Xu, C. B. Biomass Bioenergy 2023, 174, 106860.
[31]
Sievers, C.; Zuazo, I.; Guzman, A.; Olindo, R.; Syska, H.; Lercher, J. A. J. Catal. 2007, 246, 315.
[32]
Feller, A.; Lercher, J. A. Adv. Catal. 2004, 48, 229.
[33]
Guzman, A.; Zuazo, I.; Feller, A.; Olindo, R.; Sievers, C.; Lercher, J. A. Microporous Mesoporous Mater. 2005, 83, 309.
[34]
Song, H.; Zhao, L. L.; Wang, N.; Li, F. Appl. Catal., A 2016, 526, 37.
[35]
Zhao, H. Q.; Song, H.; Zhao, L. L.; Li, F. Prog. React. Kinet. Mech. 2020, 45, 1.
[36]
Li, Y.; Zhang, X. D.; Sun, L.; Zhang, J.; Xu, H. P. Appl. Energy 2010, 87, 156.
[37]
Shu, Q.; Liu, X. Y.; Huo, Y. T.; Tan, Y. H.; Zhang, C. X.; Zou, L. X. Chin. J. Chem. Eng. 2022, 44, 351.
[38]
Wang, K.; Jiang, J. C.; Si, Z.; Liang, X. Y. J. Renewable Sustainable Energy 2013, 5, 052001.
[39]
Zhang, Y. M.S. Thesis, Hefei University of Technology, Hefei, 2007 (in Chinese).
[39]
(张轶, 硕士论文,合肥工业大学, 合肥, 2007.)
[40]
Song, X. M.; Sayari, A. Catal. Rev. 1996, 38, 329.
[41]
Baithy, M.; Mukherjee, D.; Rangaswamy, A.; Reddy, B. M. Catal. Lett. 2022, 152, 1428.
[42]
Amrute, A. P.; Sahoo, S.; Bordoloi, A.; Hwang, Y. K.; Hwang, J.-S.; Halligudi, S. B. Catal. Commun. 2009, 10, 1404.
[43]
Xu, X. P.; Fan, K.; Zhao, S. Z.; Li, J.; Gao, S.; Wu, Z. B.; Meng, X. J.; Xiao, F.-S. Acta Chim. Sinica 2023, 81, 1108 (in Chinese).
[43]
(徐续盼, 范凯, 赵胜泽, 李健, 高珊, 吴忠标, 孟祥举, 肖丰收, 化学学报, 2023, 81, 1108.)
[44]
Ma, T. L.; Yun, Z.; Xu, W.; Chen, L. G.; Li, L.; Ding, J. F.; Shao, R. Chem. Eng. J. 2016, 294, 343.
[45]
Miao, K. K.; Luo, X. L.; Wang, W.; Guo, J. L.; Guo, S. F.; Cao, F. J.; Hu, Y. Q.; Chang, P. M.; Feng, G. D. Microporous Mesoporous Mater. 2019, 289, 109640.
[46]
Zhang, G. X.; Song, A. K.; Duan, Y. W.; Zheng, S. L. Microporous Mesoporous Mater. 2018, 255, 61.
[47]
Prasomsri, T.; Jiao, W. Q.; Weng, S. Z.; Garcia Martinez, J. Chem. Commun. 2015, 51, 8900.
[48]
Gao, B. B.; Yang, M.; Qiao, Y. Y.; Li, J. Z.; Xiang, X.; Wu, P. F.; Wei, Y. X.; Xu, S. T.; Tian, P.; Liu, Z. M. Catal. Sci. Technol. 2016, 6, 7569.
[49]
Li, Y.; Yu, J. H. Nat. Rev. Mater. 2021, 6, 1156.
[50]
Upham, D. C.; Orazov, M.; Jaramillo, T. F. J. Catal. 2021, 399, 132.
[51]
Xue, H. F.; Huang, X. M.; Ditzel, E.; Zhan, E. S.; Ma, M.; Shen, W. J. Chin. J. Catal. 2013, 34, 1496.
[52]
Li, J. R.; Yang, Z.; Li, S. W.; Jin, Q. P.; Zhao, J. S. J. Ind. Eng. Chem. 2020, 82, 1.
[53]
Juan, J. C.; Zhang, J. C.; Yarmo, M. A. J. Mol. Catal. A: Chem. 2007, 267, 265.
[54]
Kim, H.-J.; Shul, Y.-G.; Han, H. Appl. Catal., A 2006, 299, 46.
[55]
Chen, L.; Nohair, B.; Zhao, D. Y.; Kaliaguine, S. Appl. Catal., A 2018, 549, 207.
[56]
Marcì, G.; García-López, E.; Bellardita, M.; Parisi, F.; Colbeau-Justin, C.; Sorgues, S.; Liotta, L. F.; Palmisano, L. Phys. Chem. Chem. Phys. 2013, 15, 13329.
[57]
Yue, D.; Lei, J. H.; Zhou, L. N.; Du, X. D.; Guo, Z. R.; Li, J. S. Arabian J. Chem. 2020, 13, 2649.
[58]
Zhao, J. Ph.D. Dissertation, Fudan University, Shanghai, 2008 (in Chinese).
[58]
(赵杰, 博士论文, 复旦大学, 上海, 2008.)
[59]
Hino, M.; Arata, K. Chem. Lett. 1979, 8, 477.
[60]
Li, L.; Yan, B.; Li, H. X.; Yu, S. T.; Liu, S. W.; Yu, H. L.; Ge, X. P. Fuel 2018, 226, 190.
[61]
Ji, X. B.; Chen, Y. X.; Shen, Z. Y. Asian J. Chem. 2014, 26, 5769.
[62]
Singh, R. P.; Shiwankar, M. M.; Maurya, A. K.; Talmale, A. S.; Gaikwad, G. S.; Wankhade, A. V. J. Photochem. Photobiol., A 2024, 452, 115537.
[63]
Zou, R.; Shen, C. Y.; Sun, K. H.; Ma, X. B.; Li, Z. S.; Li, M. S.; Liu, C.-J. J. Energy Chem. 2024, 93, 135.
[64]
Jiao, Y.; Li, S. S.; Liu, B.; Du, Y. M.; Wang, J. L.; Lu, J.; Chen, Y. Q. Appl. Therm. Eng. 2015, 91, 417.
[65]
Jiao, Y.; Zhang, H.; Li, S. S.; Guo, C. H.; Yao, P.; Wang, J. L. Fuel 2018, 233, 724.
[66]
Wei, X. L.; Cheng, Q. W.; Sun, T. G.; Tong, S.; Meng, L. L. Appl. Organomet. Chem. 2021, 35, e6063.
[67]
Feng, J. Y.; Wang, Q. S.; Wu, T.; Gao, S. J.; Zhu, K.; Ye, D.; Guo, R. T. Fuel 2024, 363, 130989.
[68]
Masula, K.; Kore, R.; Bhongiri, Y.; Pola, S.; Basude, M. J. Mol. Struct. 2024, 1305, 137750.
[69]
Song, W. X.; Liu, C.; Yan, J.; Zhou, L. Q.; Zhang, L. H. J. Photochem. Photobiol., A 2024, 451, 115482.
[70]
Yaseen, M.; Khan, A.; Humayun, M.; Bibi, S.; Farooq, S.; Bououdina, M.; Ahmad, S. Green Chem. Lett. Rev. 2024, 17, 2321251.
[71]
Kignelman, G.; Thielemans, W. J. Mater. Sci. 2021, 56, 16877.
[72]
Chen, C. C.; Chen, H. R.; Yu, J. C.; Ye, Z. Q.; Shi, J. L. Chin. J. Catal. 2011, 32, 647 (in Chinese).
[72]
(陈崇城, 陈航榕, 俞建长, 叶争青, 施剑林, 催化学报, 2011, 32, 647.)
[73]
Huang, Y. C.; Zhang, G. C.; Zhang, Q. H. ACS Omega 2021, 6, 3875.
[74]
Freitas, E. F.; Paiva, M. F.; Dias, S. C. L.; Dias, J. A. Catal. Today 2017, 289, 70.
[75]
Devi, K. K.; Chellapandiankannan J. Porous Mater. 2023, 30, 1055.
[76]
Mateos, P. S.; Ruscitti, C. B.; Casell, M. L.; Matkovic, S. R.; Briand, L. E. Catalysts 2023, 130, 1253.
[77]
Ahmad, M. Y.; Saleh, S. N. M.; Abdullah, A. Z. Appl. Catal., A 2024, 670, 119534.
[78]
Liu, X.; Wang, K.; Liu, B.; Guo, Z.; Zhang, C.; Lv, Z. Catal. Lett. 2021, 152, 2756.
[79]
Yuan, H.; He, J.; Li, R.; Ma, X. Res. Chem. Intermed. 2017, 43, 4353.
[80]
Zhang, M.; Cheng, Q. W.; Chen, T.; We, X. L.; Meng, L. L. Appl. Organomet. Chem. 2022, 36, e6617.
[81]
Zhou, X.; He, P.; Zhang, C. ACS Omega 2020, 5, 11529.
[82]
Peng, Q. P.; Zhao, X. G.; Li, D. F.; Chen, M. Y.; Wei, X. J.; Fang, J.; Cui, K.; Ma, Y.; Hou, Z. S. Fuel Process. Technol. 2020, 214, 106705.
[83]
Wang, A. Q.; Wang, J. X.; Lu, C.; Xu, M. L.; Lv, J. H.; Wu, X. L. Fuel 2018, 234, 430.
[84]
Thimmaraju, N.; Mohamed Shamshuddin, S. Z.; Pratap, S. R.; Shyam Prasad, K. Arabian J. Chem. 2019, 12, 1860.
[85]
Meng, C.; Cao, G. P.; Li, X. K.; Yan, Y. Z.; Zhao, E. Y.; Hou, L. Y.; Shi, H. Y. React. Kinet. Mech. Catal. 2017, 121, 719.
[86]
Wang, S.; Meng, X.; Liu, N. W.; Shi, L. Sep. Purif. Technol. 2023, 308, 122731.
[87]
Wang, Y. H.; Wang, J. J.; Liang, J. H.; Wang, J. G.; Cheng, J.; Ding, Z. X.; Liu, Z.; Ren, X. Q. Acta Phys.-Chim. Sin. 2017, 33, 2277 (in Chinese).
[87]
(王跃桦, 王俊杰, 梁金花, 王俊格, 成静, 丁中协, 刘振, 任晓乾, 物理化学学报, 2017, 33, 2277.)
[88]
Wang, T. T.; Dai, Q. G.; Yan, F. W. Korean J. Chem. Eng. 2017, 34, 664.
[89]
Miao, L.; Hong, Z.; Wang, X. X.; Jia, W. Z.; Zhao, G. Q.; Huan, Y. Q.; Zhu, Z. R. Microporous Mesoporous Mater. 2022, 332, 111718.
[90]
Liu, R. Z.; Bian, Y. K.; Dai, W. L. Chin. J. Struct. Chem. 2024, 43, 100250.
[91]
Yi, X. F.; Liu, K. Y.; Chen, W.; Li, J. J.; Xu, S. T.; Li, C. B.; Xiao, Y.; Liu, H. C.; Guo, X. W.; Liu, S.-B.; Zheng, A. M. J. Am. Chem. Soc. 2018, 140, 10764.
[92]
Gao, N. B.; Salisu, J.; Quan, C.; Williams, P. Renewable Sustainable Energy Rev. 2021, 145, 111023.
[93]
Zheng, B. Z.; Fan, J. Y.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R. R.; Liu, X. G. Chem. Rev. 2022, 122, 5519.
[94]
Zhang, S.; Saji, S. E.; Yin, Z. Y.; Zhang, H. B.; Du, Y. P.; Yan, C.-H. Adv. Mater. 2021, 33, 2005988.
[95]
Bhattar, S.; Abedin, M. A.; Kanitkar, S.; Spivey, J. J. Catal. Today 2021, 365, 2.
[96]
Liu, Y.; Wang, L. H.; Li, R.; Hu, R. S. J. Mol. Catal. A: Chem. 2016, 421, 29.
[97]
Li, H.; Gui, Z. Y.; Yang, S.; Qi, Z. W.; Saravanamurugan, S.; Riisager, A. Energy Technol. 2018, 6, 1060.
[98]
Wang, H. Y.; Ma, S.; Zhou, Z. M.; Li, M. J.; Wang, H. Fuel 2020, 269, 117419.
[99]
Sievers, C.; Liebert, J. S.; Stratmann, M. M.; Olindo, R.; Lercher, J. A. Appl. Catal., A 2008, 336, 89.
[100]
Yang, Z. Q.; Zhang, R. R.; Zhang, H. H.; Tang, H. G.; Liu, R. X.; Zhang, S. J. Chin. J. Chem. Eng. 2022, 46, 173.
[101]
Zhang, H. H.; Xu, J. K.; Tang, H. G.; Yang, Z. Q.; Liu, R. X.; Zhang, S. J. Ind. Eng. Chem. Res. 2019, 58, 9690.
[102]
Gerzeliev, I. M.; Temnikova, V. A.; Deniskin, O. V.; Baskhanova, M. N.; Khusaimova, D. O.; Maksimov, A. L. Pet. Chem. 2019, 59, 706.
[103]
Thakur, R.; Halder, G.; Barman, S. Int. J. Chem. React. Eng. 2020, 18, 20200032.
[104]
Wei, W. Q.; Wu, S. B. Fuel 2018, 225, 311.
[105]
Yan, G. X.; Wang, A. Q.; Wachs, I. E.; Baltrusaitis, J. Appl.Catal., A 2019, 572, 210.
[106]
Yang, L. M.; Xing, S. Y.; Sun, H. Z.; Miao, C. L.; Li, M.; Lv, P.; Wang, Z. M.; Yuan, Z. H. Fuel Process. Technol. 2019, 187, 52.
[107]
Song, H.; Wang, N.; Song, H. L.; Li, F. Catal. Commun. 2015, 59, 61.
[108]
Wang, P. Z.; Zhang, J. Y.; Han, C. Y.; Yang, C. H.; Li, C. Y. Appl. Surf. Sci. 2016, 378, 489.
[109]
Li, L. R. M.S. Thesis, Northeast Petroleum University, Daqing, 2012 (in Chinese).
[109]
(李丽蓉, 硕士论文,东北石油大学, 大庆, 2012.)
[110]
Suo, Y. H. Ph.D. Dissertation, Harbin Institute of Technology, Harbin, 2014 (in Chinese).
[110]
(所艳华, 博士论文,哈尔滨工业大学, 哈尔滨, 2014.)
[111]
Ebadinezhad, B.; Haghighi, M. Chem. Eng. J. 2020, 402, 125146.
[112]
Li, X. P. M.S. Thesis, Jiangxi University of Science and Technology, Ganzhou, 2020 (in Chinese).
[112]
(李兴鹏, 硕士论文,江西理工大学, 赣州, 2020.)
[113]
Li, Y.; Huang, S. Y.; Cheng, Z. Z.; Cai, K.; Li, L. D.; Milan, E.; Lv, J.; Wang, Y.; Sun, Q.; Ma, X. B. Appl. Catal., B 2019, 256, 117777.
[114]
Khezri, H.; Izadbakhsh, A.; Izadpanah, A. A. Fuel Process. Technol. 2020, 199, 106253.
[115]
Aghaei, E.; Haghighi, M. Microporous Mesoporous Mater. 2018, 270, 227.
[116]
Zhao, Z. K.; Ran, J. Appl. Catal., A 2015, 503, 77.
[117]
Wang, X. M.; Wu, X. T.; Zhao, M.; Zhang, R.; Wang, Z. J.; Li, Y. O.; Zhang, L. L.; Wang, X.; Song, S. Y.; Zhang, H. J. Nano Res. 2024, 17, 5645.
[118]
Wu, X. T.; Wang, X.; Zhang, L. L.; Wang, X. M.; Song, S. Y.; Zhang, H. J. Angew. Chem. Int. Ed. 2024, 63, e202317594.
[119]
Fan, J.; Ning, P.; Song, Z. X.; Liu, X.; Wang, L. Y.; Wang, J.; Wang, H. M.; Long, K. X.; Zhang, Q. L. Chem. Eng. J. 2018, 334, 855.
[120]
Gardy, J.; Osatiashtiani, A.; Céspedes, O.; Hassanpour, A.; Lai, X. J.; Lee, A. F.; Wilson, K.; Rehan, M. Appl. Catal., B 2018, 234, 268.
[121]
Wang, J.; Yang, P. P.; Fan, M. Q.; Yu, W.; Jing, X. Y.; Zhang, M. L.; Duan, X. Mater. Lett. 2007, 61, 2235.
[122]
Zeng, M. J.; Pan, X. J. Catal. Rev. 2022, 64, 445.
[123]
Wu, L. H.; Zhou, Y. F.; Nie, W. Y.; Song, L. Y.; Chen, P. P. Appl. Surf. Sci. 2015, 351, 320.
[124]
Han, X. X.; Zhang, L. L.; Zhang, R.; Wang, K.; Wang, X.; Li, B.; Tao, Z. P.; Song, S. Y.; Zhang, H. J. Dalton Trans. 2024, 53, 3290.
[125]
Xu, J. H.; Li, L. L.; Pan, J.; Cui, W. J.; Liang, X.; Yu, Y.; Liu, B.; Wang, X.; Song, S. Y.; Zhang, H. J. Adv. Sustainable Syst. 2022, 6, 2100439.
[126]
Zhang, S. S.; Zhang, L. L.; Liu, L.; Chu, X.; Wang, X.; Song, S. Y.; Zhang, H. J. New J. Chem. 2023, 47, 6282.
[127]
Xu, J.; Wang, Y.; Wang, K.; Zhao, M.; Zhang, R.; Cui, W. J.; Liu, L.; Bootharaju, M. S.; Kim, J. H.; Hyeon, T.; Zhang, H. J.; Wang, Y.; Song, S. Y.; Wang, X. Angew. Chem. Int. Ed. 2023, 62, e202302877.
[128]
Liang, X.; Zhang, L. L.; Wang, X.; Song, S. Y.; Zhang, H. J. Chin. J. Struct. Chem. 2023, 42, 100101.
[129]
Wang, H. L.; Bootharaju, M. S.; Kim, J. H.; Wang, Y.; Wang, K.; Zhao, M.; Zhang, R.; Xu, J.; Hyeon, T.; Wang, X.; Song, S. Y.; Zhang, H. J. J. Am. Chem. Soc. 2023, 145, 2264.
[130]
Winoto, H. P.; Fikri, Z. A.; Ha, J.-M.; Park, Y.-K.; Lee, H.; Suh, D. J.; Jae, J. Appl. Catal., B 2019, 241, 588.
文章导航

/