收稿日期: 2024-09-24
网络出版日期: 2024-11-14
基金资助
国家科技重大专项基金(2022YFB350400); 国家自然科学基金(22020102003); 国家自然科学基金(22025506); 国家自然科学基金(22271274); 国家自然科学基金(U23A20140); 吉林省科技发展计划项目(20230101022JC)
Current Advances of Solid Acid Catalysts
Received date: 2024-09-24
Online published: 2024-11-14
Supported by
National Science and Technology Major Project of China(2022YFB350400); National Natural Science Foundation of China(22020102003); National Natural Science Foundation of China(22025506); National Natural Science Foundation of China(22271274); National Natural Science Foundation of China(U23A20140); Jilin Province Science and Technology Development Plan Project(20230101022JC)
固体酸是一类制备过程简单、环境污染小且催化活性高的催化材料, 在烷基化、异构化和酯化反应等多种化学过程中表现出卓越的催化活性. 然而, 其稳定性不足和再生活性低下的问题, 很大程度上制约了其在大规模工业生产中的应用. 因此, 开发兼具高活性和高稳定性的新型固体酸催化剂具有极其重要的研究价值和意义. 本综述介绍了常用固体酸催化剂的概念、分类、合成方法以及表征技术, 并引入一些经过稀土改性的固体酸催化剂的应用研究进展. 本综述主要着重于研究固体酸催化剂酸性质对于催化性能的影响(如酸强度、酸含量、酸位点种类等), 而不是传统的物化性质(如比表面积、晶相、表面形貌等). 最后, 对固体酸催化剂的发展前景进行了展望.
张宇 , 张睿 , 王子健 , 汪啸 , 宋术岩 , 张洪杰 . 固体酸催化剂的研究进展[J]. 化学学报, 2025 , 83(2) : 152 -169 . DOI: 10.6023/A24090289
With the increasing awareness of environmental protection and the in-depth implementation of sustainable development strategies, the commonly used liquid acid catalysts in traditional chemical production processes are facing the pressure of elimination or substitution due to their high corrosiveness, difficulty in recycling and potential environmental impact. Solid acids, renowned for their straightforward preparation, minimal ecological footprint, and exceptional catalytic prowess, have become the focus of scientific research and industrial attention. Currently, solid acid catalysts have been proven to be efficient in catalyzing diverse chemical reactions such as alkylation, isomerization, and esterification reactions. Nevertheless, their extensive industrial adoption is significantly hindered by the challenges of suboptimal stability and limited reusability. Developing advanced solid acid catalysts with high activity and stability is of great value and significance in both theoretical research and experimental exploration. A significant amount of notable fundamental research has been devoted to overcoming these limitations, and this review summarizes the scientific and technological work dedicated to preparing efficient solid acid catalysts. At the same time, we highlight the importance of rare earth elements for modification of solid acid catalysts due to their unique multi-electronic bonding and coordinated variability nature, which can have a positive effect on the structural evolution of acid catalysts, thereby improving the activity and stability of solid acid catalysts. This review initially presents concept, classification, synthesis methods and characterization of commonly used solid acid catalysts. Beyond that, we introduce the represented research progress of rare earth elements modified solid acid catalysts. The main emphasis of this review is investigating the contribution of acid properties to the catalytic performance (e.g., acid strength, acid content, type of acid sites, etc.), rather than the traditional physical and chemical properties (e.g., specific surface area, crystalline structure, morphology, etc.). Finally, we present the challenges of the existing catalytic systems and prospects of this field.
Key words: solid acid; catalyst; synthesis; characterization; rare earth
| [1] | Qin, R. Z.; Zeng, H. C. Adv. Funct. Mater. 2019, 29, 1903264. |
| [2] | Ly, I.; Layan, E.; Picheau, E.; Chanut, N.; Nallet, F.; Bentaleb, A.; Dourges, M.-A.; Pellenq, R.; Hillard, E.; Toupance, T. ACS Appl. Mater. Interfaces 2022, 14, 13305. |
| [3] | Brzeski, J.; Skurski, P. Heliyon 2019, 5, e02133. |
| [4] | Kirdant, S. P.; Biradar Tamboli, A. T.; Jadhav, V. H. Helv. Chim. Acta 2022, 105, e202200032. |
| [5] | Kore, R.; Scurto, A. M.; Shiflett, M. B. Ind. Eng. Chem. Res. 2020, 59, 15811. |
| [6] | Zhang, L.; Long, B. ACS Omega 2019, 4, 18996. |
| [7] | Singhal, S.; Agarwal, S.; Singh, M.; Rana, S.; Arora, S.; Singhal, N. J. Mol. Liq. 2019, 285, 299. |
| [8] | Bayat, M.; Gheidari, D. Chemistryselect 2022, 7, e202200774. |
| [9] | H?pfl, V. B.; Schachtl, T.; Liu, Y.; Lercher, J. A. Ind. Eng. Chem. Res. 2022, 61, 330. |
| [10] | Mu, J. L.; Liang, M. F.; Huang, H.; Meng, J.; Xu, L. L.; Song, Z. L.; Wu, M.; Miao, Z. C.; Zhuo, S. P.; Zhou, J. RSC Adv. 2022, 12, 9310. |
| [11] | Jiang, L.; Fan, Y. Q.; Zhang, X. X.; Pei, Y.; Yan, S. R.; Qiao, M. H.; Fan, K. N.; Zong, B. N. Acta Chim. Sinica 2023, 81, 231 (in Chinese). |
| [11] | (姜兰, 范义秋, 张晓昕, 裴燕, 闫世润, 乔明华, 范康年, 宗保宁, 化学学报, 2023, 81, 231.) |
| [12] | Cai, X. L. M.S. Thesis, Guangdong University of Technology, Guangzhou, 2016 (in Chinese). |
| [12] | (蔡晓兰, 硕士论文,广东工业大学, 广州, 2016.) |
| [13] | Munyentwali, A.; Li, H.; Yang, Q. H. Appl. Catal., A 2022, 633, 118525. |
| [14] | ?nan, B.; Ko?er, A. T.; ?z?imen, D. B. J. Anal. Appl. Pyrolysis 2023, 173, 106095. |
| [15] | Zhang, Q. F.; Xie, W. L.; Li, J. B.; Guo, L. H. Renewable Energy 2023, 217, 119144. |
| [16] | Duan, X. X.; Wang, H. Y.; Pan, D. H.; Chen, S. W.; Yu, F.; Yan, X. L.; Li, R. F. Acta Chim. Sinica 2024, 82, 755 (in Chinese). |
| [16] | (段晓宣, 王恒燕, 潘大海, 陈树伟, 于峰, 闫晓亮, 李瑞丰, 化学学报, 2024, 82, 755.) |
| [17] | Esmi, F.; Borugadda, V. B.; Dalai, A. K. Catal. Today 2022, 404, 19. |
| [18] | Tang, S. Y.; Duan, X. L.; Zhang, Q. Y.; Wang, C. W.; Wang, W. G.; Feng, W. L.; Wang, T. L. Biomass Convers. Biorefin. 2022, 14, 2311. |
| [19] | Pasupulety, N.; Al-zahrani, A. A.; Daous, M. A.; Driss, H.; Alhumade, H. Fuel 2022, 324, 124513. |
| [20] | Changmai, B.; Vanlalveni, C.; Ingle, A. P.; Bhagat, R.; Rokhum, L. RSC Adv. 2020, 10, 41625. |
| [21] | álvarez, M.; Cueto, J.; Serrano, D. P.; Marín, P.; Ordó?ez, S. Catal. Today 2024, 428, 114464. |
| [22] | Lani, N. S.; Ngadi, N. Appl. Nanosci. 2022, 12, 3755. |
| [23] | Oishi, R.; Li, D. X.; Okazaki, M.; Kinoshita, H.; Ochiai, N.; Yamauchi, N.; Kobayashi, Y.; Wakihara, T.; Okubo, T.; Tada, S.; Iyoki, K. J. CO2 Util. 2023, 72, 102491. |
| [24] | Wang, Y.; Dai, Y. N.; Wang, T. H.; Li, M. L.; Zhu, Y.; Zhang, L. P. Fuel Process. Technol. 2022, 237, 107472. |
| [25] | Xing, X. Y.; Shi, X.; Ruan, M. Y.; Wei, Q. C.; Guan, Y.; Gao, H.; Xu, S. Q. Int. J. Biol. Macromol. 2023, 242, 125037. |
| [26] | Gromov, N. V.; Ogorodnikova, O. L.; Medvedeva, T. B.; Panchenko, V. N.; Yakovleva, I. S.; Isupova, L. A.; Timofeeva, M. N.; Taran, O. P.; Aymonier, C.; Parmon, V. N. Catalysts 2023, 13, 1298. |
| [27] | Huang, H.; Mu, J. L.; Liang, M. F.; Qi, R. R.; Wu, M.; Xu, L. L.; Xu, H. M.; Zhao, J. P.; Zhou, J.; Miao, Z. C. Mol. Catal. 2024, 552, 113682. |
| [28] | Ishitani, H.; Takeno, K.; Sasaya, M.; Kobayashi, S. Catal. Sci. Technol. 2023, 13, 5536. |
| [29] | Matsuhashi, H. Catal. Surv. Asia 2023, 27, 132. |
| [30] | Ren, Q. H.; Ma, H.; Wang, W. B.; Chen, C. C.; Xiao, J. B.; Che, P. H.; Nie, X.; Huang, Y. Z.; Rao, K. T. V.; Xu, C. B. Biomass Bioenergy 2023, 174, 106860. |
| [31] | Sievers, C.; Zuazo, I.; Guzman, A.; Olindo, R.; Syska, H.; Lercher, J. A. J. Catal. 2007, 246, 315. |
| [32] | Feller, A.; Lercher, J. A. Adv. Catal. 2004, 48, 229. |
| [33] | Guzman, A.; Zuazo, I.; Feller, A.; Olindo, R.; Sievers, C.; Lercher, J. A. Microporous Mesoporous Mater. 2005, 83, 309. |
| [34] | Song, H.; Zhao, L. L.; Wang, N.; Li, F. Appl. Catal., A 2016, 526, 37. |
| [35] | Zhao, H. Q.; Song, H.; Zhao, L. L.; Li, F. Prog. React. Kinet. Mech. 2020, 45, 1. |
| [36] | Li, Y.; Zhang, X. D.; Sun, L.; Zhang, J.; Xu, H. P. Appl. Energy 2010, 87, 156. |
| [37] | Shu, Q.; Liu, X. Y.; Huo, Y. T.; Tan, Y. H.; Zhang, C. X.; Zou, L. X. Chin. J. Chem. Eng. 2022, 44, 351. |
| [38] | Wang, K.; Jiang, J. C.; Si, Z.; Liang, X. Y. J. Renewable Sustainable Energy 2013, 5, 052001. |
| [39] | Zhang, Y. M.S. Thesis, Hefei University of Technology, Hefei, 2007 (in Chinese). |
| [39] | (张轶, 硕士论文,合肥工业大学, 合肥, 2007.) |
| [40] | Song, X. M.; Sayari, A. Catal. Rev. 1996, 38, 329. |
| [41] | Baithy, M.; Mukherjee, D.; Rangaswamy, A.; Reddy, B. M. Catal. Lett. 2022, 152, 1428. |
| [42] | Amrute, A. P.; Sahoo, S.; Bordoloi, A.; Hwang, Y. K.; Hwang, J.-S.; Halligudi, S. B. Catal. Commun. 2009, 10, 1404. |
| [43] | Xu, X. P.; Fan, K.; Zhao, S. Z.; Li, J.; Gao, S.; Wu, Z. B.; Meng, X. J.; Xiao, F.-S. Acta Chim. Sinica 2023, 81, 1108 (in Chinese). |
| [43] | (徐续盼, 范凯, 赵胜泽, 李健, 高珊, 吴忠标, 孟祥举, 肖丰收, 化学学报, 2023, 81, 1108.) |
| [44] | Ma, T. L.; Yun, Z.; Xu, W.; Chen, L. G.; Li, L.; Ding, J. F.; Shao, R. Chem. Eng. J. 2016, 294, 343. |
| [45] | Miao, K. K.; Luo, X. L.; Wang, W.; Guo, J. L.; Guo, S. F.; Cao, F. J.; Hu, Y. Q.; Chang, P. M.; Feng, G. D. Microporous Mesoporous Mater. 2019, 289, 109640. |
| [46] | Zhang, G. X.; Song, A. K.; Duan, Y. W.; Zheng, S. L. Microporous Mesoporous Mater. 2018, 255, 61. |
| [47] | Prasomsri, T.; Jiao, W. Q.; Weng, S. Z.; Garcia Martinez, J. Chem. Commun. 2015, 51, 8900. |
| [48] | Gao, B. B.; Yang, M.; Qiao, Y. Y.; Li, J. Z.; Xiang, X.; Wu, P. F.; Wei, Y. X.; Xu, S. T.; Tian, P.; Liu, Z. M. Catal. Sci. Technol. 2016, 6, 7569. |
| [49] | Li, Y.; Yu, J. H. Nat. Rev. Mater. 2021, 6, 1156. |
| [50] | Upham, D. C.; Orazov, M.; Jaramillo, T. F. J. Catal. 2021, 399, 132. |
| [51] | Xue, H. F.; Huang, X. M.; Ditzel, E.; Zhan, E. S.; Ma, M.; Shen, W. J. Chin. J. Catal. 2013, 34, 1496. |
| [52] | Li, J. R.; Yang, Z.; Li, S. W.; Jin, Q. P.; Zhao, J. S. J. Ind. Eng. Chem. 2020, 82, 1. |
| [53] | Juan, J. C.; Zhang, J. C.; Yarmo, M. A. J. Mol. Catal. A: Chem. 2007, 267, 265. |
| [54] | Kim, H.-J.; Shul, Y.-G.; Han, H. Appl. Catal., A 2006, 299, 46. |
| [55] | Chen, L.; Nohair, B.; Zhao, D. Y.; Kaliaguine, S. Appl. Catal., A 2018, 549, 207. |
| [56] | Marcì, G.; García-López, E.; Bellardita, M.; Parisi, F.; Colbeau-Justin, C.; Sorgues, S.; Liotta, L. F.; Palmisano, L. Phys. Chem. Chem. Phys. 2013, 15, 13329. |
| [57] | Yue, D.; Lei, J. H.; Zhou, L. N.; Du, X. D.; Guo, Z. R.; Li, J. S. Arabian J. Chem. 2020, 13, 2649. |
| [58] | Zhao, J. Ph.D. Dissertation, Fudan University, Shanghai, 2008 (in Chinese). |
| [58] | (赵杰, 博士论文, 复旦大学, 上海, 2008.) |
| [59] | Hino, M.; Arata, K. Chem. Lett. 1979, 8, 477. |
| [60] | Li, L.; Yan, B.; Li, H. X.; Yu, S. T.; Liu, S. W.; Yu, H. L.; Ge, X. P. Fuel 2018, 226, 190. |
| [61] | Ji, X. B.; Chen, Y. X.; Shen, Z. Y. Asian J. Chem. 2014, 26, 5769. |
| [62] | Singh, R. P.; Shiwankar, M. M.; Maurya, A. K.; Talmale, A. S.; Gaikwad, G. S.; Wankhade, A. V. J. Photochem. Photobiol., A 2024, 452, 115537. |
| [63] | Zou, R.; Shen, C. Y.; Sun, K. H.; Ma, X. B.; Li, Z. S.; Li, M. S.; Liu, C.-J. J. Energy Chem. 2024, 93, 135. |
| [64] | Jiao, Y.; Li, S. S.; Liu, B.; Du, Y. M.; Wang, J. L.; Lu, J.; Chen, Y. Q. Appl. Therm. Eng. 2015, 91, 417. |
| [65] | Jiao, Y.; Zhang, H.; Li, S. S.; Guo, C. H.; Yao, P.; Wang, J. L. Fuel 2018, 233, 724. |
| [66] | Wei, X. L.; Cheng, Q. W.; Sun, T. G.; Tong, S.; Meng, L. L. Appl. Organomet. Chem. 2021, 35, e6063. |
| [67] | Feng, J. Y.; Wang, Q. S.; Wu, T.; Gao, S. J.; Zhu, K.; Ye, D.; Guo, R. T. Fuel 2024, 363, 130989. |
| [68] | Masula, K.; Kore, R.; Bhongiri, Y.; Pola, S.; Basude, M. J. Mol. Struct. 2024, 1305, 137750. |
| [69] | Song, W. X.; Liu, C.; Yan, J.; Zhou, L. Q.; Zhang, L. H. J. Photochem. Photobiol., A 2024, 451, 115482. |
| [70] | Yaseen, M.; Khan, A.; Humayun, M.; Bibi, S.; Farooq, S.; Bououdina, M.; Ahmad, S. Green Chem. Lett. Rev. 2024, 17, 2321251. |
| [71] | Kignelman, G.; Thielemans, W. J. Mater. Sci. 2021, 56, 16877. |
| [72] | Chen, C. C.; Chen, H. R.; Yu, J. C.; Ye, Z. Q.; Shi, J. L. Chin. J. Catal. 2011, 32, 647 (in Chinese). |
| [72] | (陈崇城, 陈航榕, 俞建长, 叶争青, 施剑林, 催化学报, 2011, 32, 647.) |
| [73] | Huang, Y. C.; Zhang, G. C.; Zhang, Q. H. ACS Omega 2021, 6, 3875. |
| [74] | Freitas, E. F.; Paiva, M. F.; Dias, S. C. L.; Dias, J. A. Catal. Today 2017, 289, 70. |
| [75] | Devi, K. K.; Chellapandiankannan J. Porous Mater. 2023, 30, 1055. |
| [76] | Mateos, P. S.; Ruscitti, C. B.; Casell, M. L.; Matkovic, S. R.; Briand, L. E. Catalysts 2023, 130, 1253. |
| [77] | Ahmad, M. Y.; Saleh, S. N. M.; Abdullah, A. Z. Appl. Catal., A 2024, 670, 119534. |
| [78] | Liu, X.; Wang, K.; Liu, B.; Guo, Z.; Zhang, C.; Lv, Z. Catal. Lett. 2021, 152, 2756. |
| [79] | Yuan, H.; He, J.; Li, R.; Ma, X. Res. Chem. Intermed. 2017, 43, 4353. |
| [80] | Zhang, M.; Cheng, Q. W.; Chen, T.; We, X. L.; Meng, L. L. Appl. Organomet. Chem. 2022, 36, e6617. |
| [81] | Zhou, X.; He, P.; Zhang, C. ACS Omega 2020, 5, 11529. |
| [82] | Peng, Q. P.; Zhao, X. G.; Li, D. F.; Chen, M. Y.; Wei, X. J.; Fang, J.; Cui, K.; Ma, Y.; Hou, Z. S. Fuel Process. Technol. 2020, 214, 106705. |
| [83] | Wang, A. Q.; Wang, J. X.; Lu, C.; Xu, M. L.; Lv, J. H.; Wu, X. L. Fuel 2018, 234, 430. |
| [84] | Thimmaraju, N.; Mohamed Shamshuddin, S. Z.; Pratap, S. R.; Shyam Prasad, K. Arabian J. Chem. 2019, 12, 1860. |
| [85] | Meng, C.; Cao, G. P.; Li, X. K.; Yan, Y. Z.; Zhao, E. Y.; Hou, L. Y.; Shi, H. Y. React. Kinet. Mech. Catal. 2017, 121, 719. |
| [86] | Wang, S.; Meng, X.; Liu, N. W.; Shi, L. Sep. Purif. Technol. 2023, 308, 122731. |
| [87] | Wang, Y. H.; Wang, J. J.; Liang, J. H.; Wang, J. G.; Cheng, J.; Ding, Z. X.; Liu, Z.; Ren, X. Q. Acta Phys.-Chim. Sin. 2017, 33, 2277 (in Chinese). |
| [87] | (王跃桦, 王俊杰, 梁金花, 王俊格, 成静, 丁中协, 刘振, 任晓乾, 物理化学学报, 2017, 33, 2277.) |
| [88] | Wang, T. T.; Dai, Q. G.; Yan, F. W. Korean J. Chem. Eng. 2017, 34, 664. |
| [89] | Miao, L.; Hong, Z.; Wang, X. X.; Jia, W. Z.; Zhao, G. Q.; Huan, Y. Q.; Zhu, Z. R. Microporous Mesoporous Mater. 2022, 332, 111718. |
| [90] | Liu, R. Z.; Bian, Y. K.; Dai, W. L. Chin. J. Struct. Chem. 2024, 43, 100250. |
| [91] | Yi, X. F.; Liu, K. Y.; Chen, W.; Li, J. J.; Xu, S. T.; Li, C. B.; Xiao, Y.; Liu, H. C.; Guo, X. W.; Liu, S.-B.; Zheng, A. M. J. Am. Chem. Soc. 2018, 140, 10764. |
| [92] | Gao, N. B.; Salisu, J.; Quan, C.; Williams, P. Renewable Sustainable Energy Rev. 2021, 145, 111023. |
| [93] | Zheng, B. Z.; Fan, J. Y.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R. R.; Liu, X. G. Chem. Rev. 2022, 122, 5519. |
| [94] | Zhang, S.; Saji, S. E.; Yin, Z. Y.; Zhang, H. B.; Du, Y. P.; Yan, C.-H. Adv. Mater. 2021, 33, 2005988. |
| [95] | Bhattar, S.; Abedin, M. A.; Kanitkar, S.; Spivey, J. J. Catal. Today 2021, 365, 2. |
| [96] | Liu, Y.; Wang, L. H.; Li, R.; Hu, R. S. J. Mol. Catal. A: Chem. 2016, 421, 29. |
| [97] | Li, H.; Gui, Z. Y.; Yang, S.; Qi, Z. W.; Saravanamurugan, S.; Riisager, A. Energy Technol. 2018, 6, 1060. |
| [98] | Wang, H. Y.; Ma, S.; Zhou, Z. M.; Li, M. J.; Wang, H. Fuel 2020, 269, 117419. |
| [99] | Sievers, C.; Liebert, J. S.; Stratmann, M. M.; Olindo, R.; Lercher, J. A. Appl. Catal., A 2008, 336, 89. |
| [100] | Yang, Z. Q.; Zhang, R. R.; Zhang, H. H.; Tang, H. G.; Liu, R. X.; Zhang, S. J. Chin. J. Chem. Eng. 2022, 46, 173. |
| [101] | Zhang, H. H.; Xu, J. K.; Tang, H. G.; Yang, Z. Q.; Liu, R. X.; Zhang, S. J. Ind. Eng. Chem. Res. 2019, 58, 9690. |
| [102] | Gerzeliev, I. M.; Temnikova, V. A.; Deniskin, O. V.; Baskhanova, M. N.; Khusaimova, D. O.; Maksimov, A. L. Pet. Chem. 2019, 59, 706. |
| [103] | Thakur, R.; Halder, G.; Barman, S. Int. J. Chem. React. Eng. 2020, 18, 20200032. |
| [104] | Wei, W. Q.; Wu, S. B. Fuel 2018, 225, 311. |
| [105] | Yan, G. X.; Wang, A. Q.; Wachs, I. E.; Baltrusaitis, J. Appl.Catal., A 2019, 572, 210. |
| [106] | Yang, L. M.; Xing, S. Y.; Sun, H. Z.; Miao, C. L.; Li, M.; Lv, P.; Wang, Z. M.; Yuan, Z. H. Fuel Process. Technol. 2019, 187, 52. |
| [107] | Song, H.; Wang, N.; Song, H. L.; Li, F. Catal. Commun. 2015, 59, 61. |
| [108] | Wang, P. Z.; Zhang, J. Y.; Han, C. Y.; Yang, C. H.; Li, C. Y. Appl. Surf. Sci. 2016, 378, 489. |
| [109] | Li, L. R. M.S. Thesis, Northeast Petroleum University, Daqing, 2012 (in Chinese). |
| [109] | (李丽蓉, 硕士论文,东北石油大学, 大庆, 2012.) |
| [110] | Suo, Y. H. Ph.D. Dissertation, Harbin Institute of Technology, Harbin, 2014 (in Chinese). |
| [110] | (所艳华, 博士论文,哈尔滨工业大学, 哈尔滨, 2014.) |
| [111] | Ebadinezhad, B.; Haghighi, M. Chem. Eng. J. 2020, 402, 125146. |
| [112] | Li, X. P. M.S. Thesis, Jiangxi University of Science and Technology, Ganzhou, 2020 (in Chinese). |
| [112] | (李兴鹏, 硕士论文,江西理工大学, 赣州, 2020.) |
| [113] | Li, Y.; Huang, S. Y.; Cheng, Z. Z.; Cai, K.; Li, L. D.; Milan, E.; Lv, J.; Wang, Y.; Sun, Q.; Ma, X. B. Appl. Catal., B 2019, 256, 117777. |
| [114] | Khezri, H.; Izadbakhsh, A.; Izadpanah, A. A. Fuel Process. Technol. 2020, 199, 106253. |
| [115] | Aghaei, E.; Haghighi, M. Microporous Mesoporous Mater. 2018, 270, 227. |
| [116] | Zhao, Z. K.; Ran, J. Appl. Catal., A 2015, 503, 77. |
| [117] | Wang, X. M.; Wu, X. T.; Zhao, M.; Zhang, R.; Wang, Z. J.; Li, Y. O.; Zhang, L. L.; Wang, X.; Song, S. Y.; Zhang, H. J. Nano Res. 2024, 17, 5645. |
| [118] | Wu, X. T.; Wang, X.; Zhang, L. L.; Wang, X. M.; Song, S. Y.; Zhang, H. J. Angew. Chem. Int. Ed. 2024, 63, e202317594. |
| [119] | Fan, J.; Ning, P.; Song, Z. X.; Liu, X.; Wang, L. Y.; Wang, J.; Wang, H. M.; Long, K. X.; Zhang, Q. L. Chem. Eng. J. 2018, 334, 855. |
| [120] | Gardy, J.; Osatiashtiani, A.; Céspedes, O.; Hassanpour, A.; Lai, X. J.; Lee, A. F.; Wilson, K.; Rehan, M. Appl. Catal., B 2018, 234, 268. |
| [121] | Wang, J.; Yang, P. P.; Fan, M. Q.; Yu, W.; Jing, X. Y.; Zhang, M. L.; Duan, X. Mater. Lett. 2007, 61, 2235. |
| [122] | Zeng, M. J.; Pan, X. J. Catal. Rev. 2022, 64, 445. |
| [123] | Wu, L. H.; Zhou, Y. F.; Nie, W. Y.; Song, L. Y.; Chen, P. P. Appl. Surf. Sci. 2015, 351, 320. |
| [124] | Han, X. X.; Zhang, L. L.; Zhang, R.; Wang, K.; Wang, X.; Li, B.; Tao, Z. P.; Song, S. Y.; Zhang, H. J. Dalton Trans. 2024, 53, 3290. |
| [125] | Xu, J. H.; Li, L. L.; Pan, J.; Cui, W. J.; Liang, X.; Yu, Y.; Liu, B.; Wang, X.; Song, S. Y.; Zhang, H. J. Adv. Sustainable Syst. 2022, 6, 2100439. |
| [126] | Zhang, S. S.; Zhang, L. L.; Liu, L.; Chu, X.; Wang, X.; Song, S. Y.; Zhang, H. J. New J. Chem. 2023, 47, 6282. |
| [127] | Xu, J.; Wang, Y.; Wang, K.; Zhao, M.; Zhang, R.; Cui, W. J.; Liu, L.; Bootharaju, M. S.; Kim, J. H.; Hyeon, T.; Zhang, H. J.; Wang, Y.; Song, S. Y.; Wang, X. Angew. Chem. Int. Ed. 2023, 62, e202302877. |
| [128] | Liang, X.; Zhang, L. L.; Wang, X.; Song, S. Y.; Zhang, H. J. Chin. J. Struct. Chem. 2023, 42, 100101. |
| [129] | Wang, H. L.; Bootharaju, M. S.; Kim, J. H.; Wang, Y.; Wang, K.; Zhao, M.; Zhang, R.; Xu, J.; Hyeon, T.; Wang, X.; Song, S. Y.; Zhang, H. J. J. Am. Chem. Soc. 2023, 145, 2264. |
| [130] | Winoto, H. P.; Fikri, Z. A.; Ha, J.-M.; Park, Y.-K.; Lee, H.; Suh, D. J.; Jae, J. Appl. Catal., B 2019, 241, 588. |
/
| 〈 |
|
〉 |