研究通讯

光催化叔胺的脱烷基酰化反应

  • 李国凯 ,
  • 朱滨锋 ,
  • 胡涛 ,
  • 樊瑞峰 ,
  • 孙蔚青 ,
  • 和振秀 ,
  • 陈景超 ,
  • 樊保敏
展开
  • a 云南民族大学 民族医药学院 民族药资源化学国家民委-教育部重点实验室 昆明 650504
    b 云南民族大学 化学与环境学院 云南省手性功能物质研究与利用重点实验室(筹) 昆明 650504

收稿日期: 2024-10-16

  网络出版日期: 2024-12-25

基金资助

国家自然科学基金(22361052); 国家自然科学基金(21961045); 国家自然科学基金(22061048); 云南省科技厅项目(202402AN360010); 云南省科技厅项目(202401BC070018)

Photoredox Dealkylative Acylation of Tertiary Amines

  • Guokai Li ,
  • Binfeng Zhu ,
  • Tao Hu ,
  • Ruifeng Fan ,
  • Weiqing Sun ,
  • Zhenxiu He ,
  • Jingchao Chen ,
  • Baomin Fan
Expand
  • a School of Ethnic Medicine, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650504, China
    b School of Chemistry and Environment, Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming 650504, China

Received date: 2024-10-16

  Online published: 2024-12-25

Supported by

National Natural Science Foundation of China(22361052); National Natural Science Foundation of China(21961045); National Natural Science Foundation of China(22061048); Yunnan Province Science and Technology Department(202402AN360010); Yunnan Province Science and Technology Department(202401BC070018)

摘要

高效绿色的酰胺合成方法一直是当前有机合成, 尤其是制药行业所关注的重要问题. 本工作发展了一种通过光催化C—N键裂解的叔胺脱烷基酰化反应, 无需额外添加剂, 使用廉价的吖啶盐作为光敏剂, 即可在室温下由酸酐和叔胺合成酰胺. 本研究为酰胺的高效合成提供了一种不需金属和添加剂, 绿色、温和、经济、高效的方法, 该方法具有广泛的底物适用范围和良好的官能团耐受性.

本文引用格式

李国凯 , 朱滨锋 , 胡涛 , 樊瑞峰 , 孙蔚青 , 和振秀 , 陈景超 , 樊保敏 . 光催化叔胺的脱烷基酰化反应[J]. 化学学报, 2025 , 83(3) : 199 -205 . DOI: 10.6023/A24100307

Abstract

The amide moiety is unarguable importance due to its widespread presence in numerous biologically active molecules, including agrochemicals, insecticides, pharmaceutical agents, peptides, proteins, polysaccharides and nucleic acids. The condensation of a carboxylic acid and an amine using a coupling reagent or metal/boronic catalyst represents the most common approach in amide synthesis and is frequently employed in producing modern pharmaceuticals. However, the use of stoichiometric amounts of coupling agents, oxidants, or catalytic amounts of metal catalysts often involves challenges such as toxicity and high cost. In connection with our studies on photoredox acylations, we herein report an efficient photoredox dealkylative acylation of tertiary amines with acid anhydrides using a commercially available and inexpensive acridine salt-based photocatalyst, which enables the preparation of a wide range of amides from tertiary amines under mild reaction conditions. To an oven dried Schlenk-tube, benzoic anhydride (45.2 mg, 0.20 mmol), triethylamine (60.7 mg, 0.60 mmol), $\mathrm{Mes}-\mathrm{Acr}^{+} \mathrm{ClO}_{4}^{-}$ (1.6 mg, 0.004 mmol) and MeCN (2 mL) were added under argon atmosphere. The reaction mixture was stirred under the irradiation of 20 W Blue LED (450 nm) at room temperature. After completion of the reaction, the reaction mixture was concentrated by vacuum, purified by silica gel chromatography, and eluted by petroleum ether/ethyl acetate to obtain products. With the optimized reaction conditions in hand, we investigated the scope of anhydrides and tertiary amines in the present dealkylative acylation. In general, all tested substrates were suitable for yielding amidation products, all of the aliphatic, aromatic anhydrides and tertiary amines are suitable reactants for the transformations to afford the corresponding amides in moderate to excellent yields. The successful gram-scale reaction and late-stage functionalization of drug molecule in mild conditions under room temperature have qualified the protocol to be practical, cost-effective, and environmentally friendly. The mechanistic studies have verified the single-electron oxidation of tertiary amine by the photosensitiser and the generation of an acyl radical via single electron reduction of anhydride.

参考文献

[1]
(a) Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243.
[1]
(b) Eberhardt, E. S.; Raines, R. T. J. Am. Chem. Soc. 1994, 116, 2149.
[1]
(c) Kumari, S.; Carmona, A. V.; Tiwari, A. K.; Trippier, P. C. J. Med. Chem. 2020, 63, 12290.
[1]
(d) Mahesh, S.; Tang, K.-C.; Raj, M. Molecules 2018, 23, 2615.
[2]
(a) Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Chem. Soc. Rev. 2014, 43, 2714.
[2]
(b) Chaudhari, P. S.; Salim, S. D.; Sawant, R. V.; Akamanchi, K. G. Green Chem. 2010, 12, 1707.
[2]
(c) Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. A. J. Comb. Chem. 1999, 1, 55.
[3]
Selected reviews of amide synthesis: (a) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.
[3]
(b) Ojeda-Porras, A.; Gamba-Sánchez, D. J. Org. Chem. 2016, 81, 11548.
[3]
(c) Matsuo, B. T.; Oliveira, P. H. R.; Pissinati, E. F.; Vega, K. B.; de Jesus, I. S.; Correia, J. T. M.; Paixao, M. Chem. Commun. 2022, 58, 8322.
[3]
(d) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606.
[3]
(e) Massolo, E.; Pirola, M.; Benaglia, M. Eur. J. Org. Chem. 2020, 30, 4641.
[3]
(f) de Figueiredo, R. M.; Suppo, J.-S.; Campagne, J.-M. Chem. Rev. 2016, 116, 12029.
[3]
(g) Allena, C. L.; Williams, J. M. J. Chem. Soc. Rev. 2011, 40, 3405.
[3]
(h) Nagaraaj, P.; Vijayakumar, V. Org. Chem. Front. 2019, 6, 2570.
[4]
(a) Marcelli, T. Angew. Chem. Int. Ed. 2010, 49, 6840.
[4]
(b) Ishihara, K. Tetrahedron 2009, 65, 1085.
[4]
(c) Ishihara, K.; Ohara, S.; Yamamoto, H. J. Org. Chem. 1996, 61, 4196.
[4]
(d) Sayesa, M.; Charette, A. B. Green Chem. 2017, 19, 5060.
[4]
(e) Hu, L.; Xu, S.-L.; Zhao, Z.-G.; Yang, Y.; Peng, Z.-Y.; Yang, M.; Wang, C.-L.; Zhao, J.-F. J. Am. Chem. Soc. 2016, 138, 13135.
[4]
(f) Dunetz, J. R.; Magano, J.; Weisenburger, G. A. Org. Process Res. Dev. 2016, 20, 140.
[5]
(a) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317, 790.
[5]
(b) Nordstr?m, L. U.; Vogt, H.; Madsen, R. J. Am. Chem. Soc. 2008, 130, 17672.
[5]
(c) Sarkar, S. D.; Studer, A. Org. Lett. 2010, 12, 1992.
[5]
(d) Bechi, B.; Herter, S.; McKenna, S.; Riley, C.; Leimkühler, S.; Turner, N. J.; Carnell, A. J. Green Chem. 2014, 16, 4524.
[5]
(e) Yoo, W.-J.; Li, C.-J. J. Am. Chem. Soc. 2006, 128, 13064.
[5]
(f) Ekoue-Kovi, K.; Wolf, C. Chem. Eur. J. 2008, 14, 6302.
[5]
(g) Li, Y.; Jia, F, Ma, L.-N.; Li, Z.-P. Acta Chim. Sinica 2015, 73, 1311.
[6]
(a) Li, G.-C.; Ji, C.-L.; Hong, X.; Szostak, M. J. Am. Chem. Soc. 2019, 141, 11161.
[6]
(b) Dander, J. E.; Baker, E. L.; Garg, N. K. Chem. Sci. 2017, 8, 6433.
[6]
(c) Baker, E. L.; Yamano, M. M.; Zhou, Y.-J.; Anthony, S. M.; Garg, N. K. Nat. Commun. 2016, 7, 11554.
[6]
(d) Chen, J.-J.; Xia, Y.-Z.; Lee, S. Org. Lett. 2020, 22, 3504.
[6]
(e) Lanigan, R. M.; Sheppard, T. D. Eur. J. Org. Chem. 2013, 33, 7453.
[7]
(a) Rosen, T.; Lico, I. M.; Chu, D. T. W. J. Org. Chem. 1988, 53, 1580.
[7]
(b) Crochet, P.; Cadierno, V. Chem. Commun. 2015, 51, 2495.
[7]
(c) Kang, B.; Hong, S. H. Adv. Synth. Catal. 2015, 357, 834.
[7]
(d) Dang, T. T.; Chen, A. Q.; Seayad, A. M. RSC Adv. 2014, 4, 30019.
[8]
(a) Reed, N. L.; Yoon, T. P. Chem. Soc. Rev. 2021, 50, 2954.
[8]
(b) Chatterjee, T.; Iqbal, N.; You, Y.; Cho, E. J. Acc. Chem. Res. 2016, 49, 2284.
[8]
(c) Holmberg-Douglas, N.; Nicewicz, D. A. Chem. Rev. 2022, 122, 1925.
[8]
(d) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
[9]
(a) Bao, Y.-S.; Baiyin, M.; Agula, B.; Jia, M.-L.; Zhaorigetu, B. J. Org. Chem. 2014, 79, 803.
[9]
(b) Li, Y.-M.; Ma, L.-N.; Jia, F.; Li, Z.-P. J. Org. Chem. 2013, 78, 5638.
[9]
(c) Li, Z.-H.; Liu, L.; Xu, K.-Q.; Huang, T.-Z.; Li, X.-Y.; Song, B.; Chen, T.-Q. Org. Lett. 2020, 22, 5517.
[9]
(d) Moglie, Y.; Buxaderas, E.; Mancini, A.; Alonso, F.; Radivoy, G. ChemCatChem 2019, 11, 1487.
[9]
(e) Cheng, H.-C.; Hou, W.-J.; Li, Z.-W.; Liu, M.-Y.; Guan, B.-T. Chem. Commun. 2015, 51, 17596.
[10]
(a) Gu, C.; Wang, S.-S.; Zhang, Q.-R.; Xie, J. Chem. Commun. 2022, 58, 5873.
[10]
(b) Liu, C.; Chen, H.-N.; Xiao, T.-F.; Hu, X.-Q.; Xu, P.-F.; Xu, G.-Q. Chem. Commun. 2023, 59, 2003.
[10]
(c) Li, R.-J.; Zhan, R.-Q.; Lang, Y.-T.; Li, C.-J.; Zeng, H.-Y. Chem. Sci. 2024, 10.1039/D4SC02412E.
[10]
(d) Ma, L.-N.; Li, Y.-M.; Li, Z.-P. Sci. China Chem. 2015, 58, 1310.
[11]
(a) Meng, L.; Yang, C.-H.; Dong, J.; Wen, W.-L.; Chen, J.-C.; Fan, B.-M. Org. Chem. Front. 2024, 11, 21.
[11]
(b) Dong, J.; Tang, Z.; Zou, L.-Q.; Zhou, Y.-Y.; Chen, J.-C. Chem. Commun. 2024, 60, 742.
[12]
Chaffman, M.; Brogden, R. N. Drugs 1985, 29, 387.
[13]
(a) Dong, S.-P.; Wu, G.-B.; Yuan, X.-Q.; Zou, C.-C.; Ye, J.-X. Org. Chem. Front. 2017, 4, 2230.
[13]
(b) Raviola, C.; Protti, S.; Ravelli, D. Fagnoni, M. Green Chem. 2019, 21, 748.
[13]
(c) Bergonzini, G.; Cassani, C.; Lorimer-Olsson, H.; H?rberg, J.; Wallentin, C. J. Chem. Eur. J. 2016, 22, 3292.
[13]
(d) Allen, A. D.; Andraos, J.; Tidwell, T. T.; Vukovic, S. J. Org. Chem. 2014, 2, 679.
文章导航

/