研究论文

锂离子电池富锂层状正极材料Li-Ni-Mn-O应变机理研究

  • 刘继洪 ,
  • 祝佳鹏 ,
  • 张旭 ,
  • 张纪阳 ,
  • 黄超洋 ,
  • 贾桂霄 ,
  • 安胜利
展开
  • a 内蒙古科技大学材料科学与工程学院 内蒙古自治区先进陶瓷材料与器件重点实验室 轻稀土资源绿色提取与高效利用教育部重点实验室(内蒙古科技大学) 包头 014010
    b 内蒙古科技大学稀土产业学院 包头 014010

收稿日期: 2024-11-28

  网络出版日期: 2025-02-05

基金资助

国家自然科学基金(52262039); 内蒙古自治区直属高校基本科研业务费基金资助

Strain Mechanism Study on Li-rich Layered Cathode Materials Li-Ni-Mn-O for Li-ion Batteries

  • Jihong Liu ,
  • Jiapeng Zhu ,
  • Xu Zhang ,
  • Jiyang Zhang ,
  • Chaoyang Huang ,
  • Guixiao Jia ,
  • Shengli An
Expand
  • a School of Materials Science and Engineering, Inner Mongolia University of Science and Technology,Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Baotou 014010, China
    b School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Baotou 014010, China
*E-mail: ; Tel.: 13015151366

Received date: 2024-11-28

  Online published: 2025-02-05

Supported by

National Natural Science Foundation of China(52262039); Basic Research Expenses of Universities directly under the Inner Mongolia Autonomous Region

摘要

富锂层状氧化物(LLOs)中Li2MnO3畴的聚集和晶格释氧导致了严重的容量/电压衰减, 阻碍了其商业化应用. 本工作设计了Co渗透(LNCMO-P)和未渗透(LNCMO-nP) Li1.17Ni0.165Co0.165Mn0.5O2两种模型, 使用第一性原理计算方法研究了Co渗透对氧化过程、脱锂结构及结构稳定性和晶格畸变的影响. 研究结果表明, 通过调控氧空位浓度可将Co渗透到Li2MnO3相. Co渗透缓解了Li2MnO3与LiTMO2两相应力畸变, 抑制了由不均匀的电化学活动和结构演变产生的晶格应变. Co的渗透激活了界面氧参与电荷补偿, 分散了氧的氧化, 分担了Li-O-Li构型中氧的氧化压力, 改善由于晶格氧过度氧化面临不可逆氧气析出的问题. 此外Ni—O强共价键引起了高自旋Co电子态出现, 缓减了充电引起的体积膨胀. 本工作为设计具有高性能结构稳定的富锂正极材料提供了理论基础.

本文引用格式

刘继洪 , 祝佳鹏 , 张旭 , 张纪阳 , 黄超洋 , 贾桂霄 , 安胜利 . 锂离子电池富锂层状正极材料Li-Ni-Mn-O应变机理研究[J]. 化学学报, 2025 , 83(2) : 101 -109 . DOI: 10.6023/A24110356

Abstract

Lithium-rich layered oxides (LLOs) has attracted the attention of scientists due to its theoretical specific capacity exceeding 250 mAh•g−1. It is considered the most promising new generation of lithium-ion battery cathode materials. However, the aggregation of Li2MnO3 domains and the release of lattice oxygen in LLOs can lead to severe capacity/voltage degradation, hindering their commercial applications. This work adopts a manganese-based lithium-rich layered Li1.17Ni0.165Co0.165Mn0.5O2 (Li-Ni-Co-Mn-O) model with C2/m symmetry. Select a 2×2×1 supercell with a total of 96 atoms, namely Li28Ni4Co4Mn12O48. Construct two systems, one with Co permeation into Li2MnO3 domain (LNCMO-P) and the other without (LNCMO-nP), to investigate the effect of Co permeation on the redox process and delithiation structure stability of Li2MnO3 domain and O. The spin-polarized generalized gradient approximation (GGA) method with PBE (Perdew Burke Ernzerhof) exchange-correlation function is adopted, and the projected augmented wave (PAW) potential function is selected to describe the interaction between ions and electrons to complete all calculations. The research results indicate that by regulating the concentration of oxygen vacancies, Co can penetrate Li2MnO3 domains. The permeation of Co alleviates the stress distortion between Li2MnO3 and LiTMO2 phases and suppresses the lattice strain caused by uneven electrochemical activity and structural evolution. The study on the geometry and electronic structure of the Li1.17Ni0.165Co0.165Mn0.5O2 system found that Co-Ni aggregation caused the appearance of high-spin Co electronic states, which alleviated the volume expansion caused by charging. The permeation of Co activates more interfacial oxygen, and oxygen at the interface participates in charge compensation and disperses oxygen oxidation, thereby sharing the oxidation pressure of oxygen in the Li-O-Li configuration, which is beneficial for suppressing the release of lattice oxygen and improving the problem of irreversible oxygen evolution caused by lattice oxygen reactions. This study provides a theoretical basis for designing lithium-rich cathode materials with high-performance structural stability.

参考文献

[1]
Whittingham, M. S. Chem. Rev. 2004, 104, 4271.
[2]
Wu, F.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49, 1569.
[3]
Manthiram, A. Nat. Commun. 2020, 11, 1550.
[4]
Deng, B.; Sun, W.; Wang, H.; Chen, T.; Li, X.; Qu, M.; Peng, G. Acta Chim. Sinica 2018, 76, 259 (in Chinese).
[4]
(邓邦为, 孙万琦, 王昊, 陈滔, 李璇, 瞿美臻, 彭工厂, 化学学报, 2018, 76, 259.)
[5]
Li, B.; Xia, D. Adv. Mater. 2017, 29, 1701054.
[6]
Zuo, W.; Luo, M.; Liu, X.; Wu, J.; Liu, H.; Li, J.; Winter, M.; Fu, R.; Yang, W.; Yang, Y. Energy Environ. Sci. 2020, 13, 4450.
[7]
Assat, G.; Iadecola, A.; Foix, D.; Dedryvère, R.; Tarascon, J.-M. ACS Energy Lett. 2018, 3, 2721.
[8]
Yu, H.; Ishikawa, R.; So, Y.-G.; Shibata, N.; Kudo, T.; Zhou, H.; Ikuhara, Y. Angew. Chem. Int. Ed. 2013, 52, 5969.
[9]
Liu, T.; Liu, J.; Li, L.; Yu, L.; Diao, J.; Zhou, T.; Li, S.; Dai, A.; Zhao, W.; Xu, S.; Ren, Y.; Wang, L.; Wu, T.; Qi, R.; Xiao, Y.; Zheng, J.; Cha, W.; Harder, R.; Robinson, I.; Wen, J.; Lu, J.; Pan, F.; Amine, K. Nature 2022, 606, 305.
[10]
Seo, D.-H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G. Nature Chem. 2016, 8, 692.
[11]
Luo, K.; Roberts, M. R.; Hao, R.; Guerrini, N.; Pickup, D. M.; Liu, Y.-S.; Edstr?m, K.; Guo, J.; Chadwick, A. V.; Duda, L. C.; Bruce, P. G. Nature Chem. 2016, 8, 684.
[12]
Hu, E.; Yu, X.; Lin, R.; Bi, X.; Lu, J.; Bak, S.; Nam, K.-W.; Xin, H. L.; Jaye, C.; Fischer, D. A.; Amine, K.; Yang, X.-Q. Nat. Energy 2018, 3, 690.
[13]
Yan, P.; Zheng, J.; Tang, Z.-K.; Devaraj, A.; Chen, G.; Amine, K.; Zhang, J.-G.; Liu, L.-M.; Wang, C. Nat. Nanotechnol. 2019, 14, 602.
[14]
Rozier, P.; Tarascon, J. M. J. Electrochem. Soc. 2015, 162, A2490.
[15]
Luo, D.; Ding, X.; Hao, X.; Xie, H.; Cui, J.; Liu, P.; Yang, X.; Zhang, Z.; Guo, J.; Sun, S.; Lin, Z. ACS Energy Lett. 2021, 6, 2755.
[16]
Wang, E.; Xiao, D.; Wu, T.; Liu, X.; Zhou, Y.; Wang, B.; Lin, T.; Zhang, X.; Yu, H. Adv. Funct. Mater. 2022, 32, 2201744.
[17]
Tian, Q.; Ji, Y.; He, H.; Tong, H.; Yu, W.; Guo, X. Materials Today Energy 2024, 46, 101709.
[18]
Zhang, K.; Qi, J.; Song, J.; Zuo, Y.; Yang, Y.; Yang, T.; Chen, T.; Liu, X.; Chen, L.; Xia, D. Adv. Mater. 2022, 34, 2109564.
[19]
Zhang, Y. L.; Yuan, Z. X.; Zhang, H.; Zhang, J. J.; Cui, G. L. Acta Chim. Sinica 2023, 81, 1724 (in Chinese).
[19]
(张雅岚, 苑志祥, 张浩, 张建军, 崔光磊, 化学学报, 2023, 81, 1724.)
[20]
Qiu, B.; Zhang, M.; Wu, L.; Wang, J.; Xia, Y.; Qian, D.; Liu, H.; Hy, S.; Chen, Y.; An, K.; Zhu, Y.; Liu, Z.; Meng, Y. S. Nat. Commun. 2016, 7, 12108.
[21]
Ning, F.; Shang, H.; Li, B.; Jiang, N.; Zou, R.; Xia, D. Energy Storage Mater. 2019, 22, 113.
[22]
Ren, X. Q.; Li, D. L.; Zhao, Z. Z.; Chen, G. Q.; Zhao, K.; Kong, X. Z.; Li, T. X. Acta Chim. Sinica 2020, 78, 1268 (in Chinese).
[22]
(任旭强, 李东林, 赵珍珍, 陈光琦, 赵坤, 孔祥泽, 李童心, 化学学报, 2020, 78, 1268.)
[23]
Qiu, K.; Yan, M. X.; Zhao, S. W.; An, S. L.; Wang, W.; Jia, G. X. Acta Chim. Sinica 2021, 79, 1146 (in Chinese).
[23]
(邱凯, 严铭霞, 赵守旺, 安胜利, 王玮, 贾桂霄, 化学学报, 2021, 79, 1146.)
[24]
Pauling, L. J. Am. Chem. Soc. 1929, 51, 1010.
[25]
Yin, C.; Wei, Z.; Zhang, M.; Qiu, B.; Zhou, Y.; Xiao, Y.; Zhou, D.; Yun, L.; Li, C.; Gu, Q.; Wen, W.; Li, X.; Wen, X.; Shi, Z.; He, L.; Shirley Meng, Y.; Liu, Z. Mater. Today 2021, 51, 15.
[26]
Liu, S.; Wang, B.; Zhang, X.; Zhao, S.; Zhang, Z.; Yu, H. Matter 2021, 4, 1511.
[27]
Hwang, J.; Myeong, S.; Jin, W.; Jang, H.; Nam, G.; Yoon, M.; Kim, S. H.; Joo, S. H.; Kwak, S. K.; Kim, M. G.; Cho, J. Adv. Mater. 2020, 32, 2001944.
[28]
Li, Z.; Li, Y.; Zhang, M.; Yin, Z.-W.; Yin, L.; Xu, S.; Zuo, C.; Qi, R.; Xue, H.; Hu, J.; Cao, B.; Chu, M.; Zhao, W.; Ren, Y.; Xie, L.; Ren, G.; Pan, F. Adv. Energy Mater. 2021, 11, 2101962.
[29]
Song, Y.; Zhao, X.; Wang, C.; Bi, H.; Zhang, J.; Li, S.; Wang, M.; Che, R. J. Mater. Chem. A 2017, 5, 11214.
[30]
Zhang, Y.; Shi, X.; Zheng, S.; Ouyang, Y.; Li, M.; Meng, C.; Yu, Y.; Wu, Z.-S. Energy Environ. Sci. 2023, 16, 5043.
[31]
Xu, L.; Chen, S.; Su, Y.; Shen, X.; He, J.; Avdeev, M.; Kan, W. H.; Zhang, B.; Fan, W.; Chen, L.; Cao, D.; Lu, Y.; Wang, L.; Wang, M.; Bao, L.; Zhang, L.; Li, N.; Wu, F. ACS Appl. Mater. Interfaces 2023, 15, 54559.
[32]
Hua, W.; Wang, S.; Knapp, M.; Leake, S. J.; Senyshyn, A.; Richter, C.; Yavuz, M.; Binder, J. R.; Grey, C. P.; Ehrenberg, H.; Indris, S.; Schwarz, B. Nat. Commun. 2019, 10, 5365.
[33]
Nayak, P. K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, J. W.; Aurbach, D. Adv. Energy Mater. 2016, 6, 1502398.
[34]
Ding, X.; Luo, D.; Cui, J.; Xie, H.; Ren, Q.; Lin, Z. Angew. Chem. Int. Ed. 2020, 59, 7778.
[35]
Guo, J.; Lai, Y.; Gao, X.; Li, S.; Zhang, H.; Guan, C.; Chen, L.; Yang, Z.; Li, S.; Zhang, Z. Energy Storage Mater. 2024, 69, 103383.
[36]
Fang, X.; Ge, M.; Rong, J.; Che, Y.; Aroonyadet, N.; Wang, X.; Liu, Y.; Zhang, A.; Zhou, C. Energy Technol. 2014, 2, 159.
[37]
He, W.; Guo, W.; Wu, H.; Lin, L.; Liu, Q.; Han, X.; Xie, Q.; Liu, P.; Zheng, H.; Wang, L.; Yu, X.; Peng, D.-L. Adv. Mater. 2021, 30, 2005937.
[38]
Zhang, L.; Takada, K.; Ohta, N.; Fukuda, K.; Sasaki, T. J. Power Sources 2005, 146, 598.
[39]
Kang, S.-H.; Amine, K. J. Power Sources 2003, 124, 533.
[40]
Wang, C.-C.; Manthiram, A. J. Mater. Chem. A 2013, 1, 10209.
[41]
Sun, Y.; Cong, H.; Zan, L.; Zhang, Y. ACS Appl. Mater. Interfaces 2017, 9, 38545.
[42]
Liu, J.; Hou, M.; Yi, J.; Guo, S.; Wang, C.; Xia, Y. Energy Environ. Sci. 2014, 7, 705.
[43]
Hwang, B. J.; Tsai, Y. W.; Carlier, D.; Ceder, G. Chem. Mater. 2003, 15, 3676.
[44]
Li, J.; Li, W.; Zhang, C.; Han, C.; Chen, X.; Zhao, H.; Xu, H.; Jia, G.; Li, Z.; Li, J.; Zhang, Y.; Guo, X.; Gao, F.; Liu, J.; Qiu, X. ACS Nano 2023, 17, 16827.
[45]
Guo, X.; Li, J.; Zhang, Y.; Zhang, X.; Liu, J.; Li, W.; Lu, L.; Jia, G.; An, S.; Qiu, X. Nano Energy 2024, 123, 109390.
[46]
Li, B.; Zhuo, Z.; Zhang, L.; Iadecola, A.; Gao, X.; Guo, J.; Yang, W.; Morozov, A. V.; Abakumov, A. M.; Tarascon, J.-M. Nat. Mater. 2023, 22, 1370.
[47]
Wei, H.; Cheng, X.; Fan, H.; Shan, Q.; An, S.; Qiu, X.; Jia, G. ChemSusChem 2019, 12, 2471.
[48]
Wei, H. Z. M.S. Thesis, Inner Mongolia University of Science and Technology, Baotou, 2019 (in Chinese).
[48]
(卫河转, 硕士论文,内蒙古科技大学, 包头, 2019.)
[49]
Cao, T.; Shi, C.; Zhao, N.; He, C.; Li, J.; Liu, E. J. Phys. Chem. C 2015, 119, 28749.
文章导航

/