PdZn合金催化剂调控CO酯化产物选择性: 从草酸二甲酯到碳酸二甲酯
收稿日期: 2024-11-14
网络出版日期: 2025-02-07
基金资助
国家重点研发计划项目(2021YFB3801600); 国家自然科学基金面上项目(22172171); 福建省自然科学基金(2022H0039); 榆林中科洁净能源创新研究院联合基金(2022010); 海西研究院自主部署项目(CXZX-2022-GH05)
PdZn Alloy Catalysts Modulating the Selectivity of CO Esterification Products: from Dimethyl Oxalate to Dimethyl Carbonate
Received date: 2024-11-14
Online published: 2025-02-07
Supported by
National Key R&D Program of China(2021YFB3801600); National Natural Science Foundation of China(22172171); Natural Science Foundation of Fujian Province(2022H0039); Grant YLU-DNL Fund(2022010); Program of Haixi Institutes(CXZX-2022-GH05)
目前, 中国已建成千万吨级煤制乙二醇生产装置, 由于乙二醇市场行情不好, 导致很多生产装置处于停产状态, 迫切需要转型. 煤制乙二醇中CO酯化可以生产草酸二甲酯(DMO)和碳酸二甲酯(DMC)两种重要的酯类化学品. 把产物DMO转变为附加值更高的DMC是一条转型思路. DMO可通过脱羰反应变成DMC, 但需要增加新的反应器和催化剂. 如果利用煤制乙二醇的旧装置, 通过更换新型催化剂, 直接产出DMC, 更具有经济性, 也更具有挑战. Pd/α-Al2O3是传统的DMO生产催化剂. 本工作提出了PdZn合金化策略, 调控CO酯化产物选择性, 实现了产物选择性从DMO调变为DMC. 相比Pd/α-Al2O3, PdZn(1:4)/α-Al2O3的DMO选择性显著下降(85.8%→16.8%), 而DMC选择性显著上升(14.2%→83.2%). 通过透射电子显微镜(TEM)和X-射线光电子能谱(XPS)等表征手段, 证明形成了PdZn合金, 且Zn降低了Pd的电子密度, 使部分Pd处于单位点的Pdδ+状态, 从而高选择性生成DMC. 本工作为煤制乙二醇装置DMO改产DMC提供了一种新思路.
李翔宇 , 李家凯 , 林淑娟 , 王明盛 , 孙径 , 徐忠宁 , 郭国聪 . PdZn合金催化剂调控CO酯化产物选择性: 从草酸二甲酯到碳酸二甲酯[J]. 化学学报, 2025 , 83(3) : 206 -211 . DOI: 10.6023/A24110346
Currently, 10 million tons of coal to ethylene glycol (CTEG) plants have been built in China. Due to the poor market conditions of ethylene glycol, many plants are in a state of shutdown and are in urgent need of transformation. CO esterification in CTEG can produce two important ester chemicals, dimethyl oxalate (DMO) and dimethyl carbonate (DMC). Converting the product DMO into higher value-added DMC is one of the transition ideas. DMO can be converted to DMC by decarbonylation, but new reactors and catalysts are needed. It would be more economical and challenging to utilize CTEG plant to produce DMC directly by replacing the catalyst with a new one. Pd/α-Al2O3 is the traditional catalyst for DMO production. In this work, we proposed a PdZn alloying strategy to modulate the selectivity of CO esterification products, and realize the product selectivity change from DMO to DMC. Compared with Pd/α-Al2O3, the selectivity to DMO over PdZn(1:4)/α-Al2O3 was significantly decreased (85.8%→16.8%), and the DMC selectivity was increased remarkably (14.2%→83.2%). The formation of PdZn alloy was demonstrated by X-ray diffraction (XRD), transmission electron microscope (TEM), and other characterizations, X-ray photoelectron spectroscopy (XPS) results showed that the alloy formed between Zn and Pd significantly changed the electron density of the Pd component, and the Pd component was in an electron-deficient state, which was conducive to the improvement of the performance of the DMC reaction. In addition, the results of CO diffused reflectance infrared Fourier transform spectroscopy (DRIFTS) characterization showed that Zn can disperse Pd. With the increase of the second metal Zn content, the continuous Pd metal phase disappears, and an isolated single-atom alloy state may be formed, which inhibits the formation of the byproduct DMO. The present study not only provides a new way to regulate the selectivity of CO esterification products, but also provides an idea for the conversion of CTEG plants.
| [1] | Yin, Z.; Yan, B.; Wang, Z. Chem. Ent. Mgt. 2024, (13), 54 (in Chinese). |
| [1] | (尹子帆, 闫炳旭, 王志强, 化工管理, 2024, (13), 54.) |
| [2] | Li, F.; Li, L. Chem. Ent. Mgt. 2021, (34), 25 (in Chinese). |
| [2] | (李飞飞, 李丽君, 化工管理, 2021, (34), 25.) |
| [3] | Zhao, T.-J.; Chen, D.; Dai, Y.-C.; Yuan, W.-K.; Holmen, A. Ind. Eng. Chem. Res. 2004, 43, 4595. |
| [4] | Wang, S.; Li, W.; Dong, Y.; Zhao, Y.; Ma, X. Catal. Commun. 2015, 72, 43. |
| [5] | Peng, S.-Y.; Xu, Z.-N.; Chen, Q.-S.; Wang, Z.-Q.; Lv, D.-M.; Sun, J.; Chen, Y.; Guo, G.-C. ACS Catal. 2015, 5, 4410. |
| [6] | Tan, H.-Z.; Wang, Z.-Q.; Xu, Z.-N.; Sun, J.; Xu, Y.-P.; Chen, Q.-S.; Chen, Y.; Guo, G.-C. Catal. Today 2018, 316, 2. |
| [7] | Tundo, P.; Selva, M. Acc. Chem. Res. 2002, 35, 706. |
| [8] | Gu, B.; Liu, G.; Yin, K.; Zhang, J.; Xiang, H.; Wang, Y. Appl. Chem. Ind. 2023, 52, 1248 (in Chinese). |
| [8] | (谷豹, 刘刚, 尹科科, 张嘉容, 项火芳, 王玉高, 应用化工, 2023, 52, 1248.) |
| [9] | Jv, N.; Li, C.; Li, F.; Xue, W.; Lv, J. New J. Chem. 2024, 48, 9062. |
| [10] | Li, G.-S. Ind. Catal. 2023, 31, 31 (in Chinese). |
| [10] | (李贵生, 工业催化, 2023, 31, 31.) |
| [11] | Wang, Z.-Q.; Sun, J.; Xu, Z.-N.; Guo, G.-C. Nanoscale 2020, 12, 20131. |
| [12] | Lv, D.-M.; Xu, Z.-N.; Peng, S.-Y.; Wang, Z.-Q.; Chen, Q.-S.; Chen, Y.; Guo, G.-C. Catal. Sci. Technol. 2015, 5, 3333. |
| [13] | Wu, H.-Y.; Qin, Y.-Y.; Xiao, Y.-H.; Chen, J.-S.; Ye, R.; Guo, R.; Yao, Y.-G. Small 2023, 19, 2208238. |
| [14] | Peng, S.-Y.; Xu, Z.-N.; Chen, Q.-S.; Wang, Z.-Q.; Chen, Y.; Lv, D.-M.; Lu, G.; Guo, G.-C. Catal. Sci. Technol. 2014, 4, 1925. |
| [15] | Xu, Z.-N.; Sun, J.; Lin, C.-S.; Jiang, X.-M.; Chen, Q.-S.; Peng, S.-Y.; Wang, M.-S.; Guo, G.-C. ACS Catal. 2012, 3, 118. |
| [16] | Peng, S.-Y.; Xu, Z.-N.; Chen, Q.-S.; Chen, Y.-M.; Sun, J.; Wang, Z.-Q.; Wang, M.-S.; Guo, G.-C. Chem. Commun. 2013, 49, 5718. |
| [17] | Tan, H.-Z.; Wang, Z.-Q.; Xu, Z.-N.; Sun, J.; Chen, Z.-N.; Chen, Q.-S.; Chen, Y.; Guo, G.-C. Catal. Sci. Technol. 2017, 7, 3785. |
| [18] | Yamamoto, Y.; Matsuzaki, T.; Tanaka, S.; Nishihira, K.; Ohdan, K.; Nakamura, A.; Okamoto, Y. J. Chem. Soc., Faraday Trans. 1997, 93, 3721. |
| [19] | Hu, S.; Xie, C.; Xu, Y.-P.; Chen, X.; Gao, M.-L.; Wang, H.; Yang, W.; Xu, Z.-N.; Guo, G.-C.; Jiang, H.-L. Angew. Chem. Int. Ed. 2023, 62, e202311625. |
| [20] | Nakaya, Y.; Furukawa, S. Chem. Rev. 2023, 123, 5859. |
| [21] | Yin, Y.; Hu, B.; Li, X.; Zhou, X.; Hong, X.; Liu, G. Appl. Catal. B: Environ. 2018, 234, 143. |
| [22] | Furukawa, S.; Suzuki, R.; Komatsu, T. ACS Catal. 2016, 6, 5946. |
| [23] | Zhou, H.; Yang, X.; Li, L.; Liu, X.; Huang, Y.; Pan, X.; Wang, A.; Li, J.; Zhang, T. ACS Catal. 2016, 6, 1054. |
| [24] | Miyazaki, M.; Furukawa, S.; Takayama, T.; Yamazoe, S.; Komatsu, T. ACS Appl. Nano Mater. 2019, 2, 3307. |
| [25] | Chen, X.; Shi, C.; Wang, X.-B.; Li, W.-Y.; Liang, C. Commun. Chem. 2021, 4, 175. |
| [26] | Cheng, M.; Zhang, X.; Guo, Z.; Lv, P.; Xiong, R.; Wang, Z.; Zhou, Z.; Zhang, M. J. Colloid Interface Sci. 2021, 602, 459. |
| [27] | Rodriguez, J. A. J. Phys. Chem. 1994, 98, 5758. |
| [28] | Wang, H.; Luo, Q.; Liu, W.; Lin, Y.; Guan, Q.; Zheng, X.; Pan, H.; Zhu, J.; Sun, Z.; Wei, S.; Yang, J.; Lu, J. Nat. Commun. 2019, 10, 4998. |
| [29] | Tan, H.-Z.; Chen, Z.-N.; Xu, Z.-N.; Sun, J.; Wang, Z.-Q.; Si, R.; Zhuang, W.; Guo, G.-C. ACS Catal. 2019, 9, 3595. |
/
| 〈 |
|
〉 |