综述

多孔材料在超铀元素分离中的应用研究进展

  • 王丽英 ,
  • 于吉攀 ,
  • 刘峙嵘 ,
  • 石伟群
展开
  • a 东华理工大学 核科学与工程学院 南昌 330013
    b 中国科学院高能物理研究所 核能化学实验室 北京 100049
    c 南开大学 先进能源材料化学教育部重点实验室 天津 300071
    d 上海交通大学 核科学与工程学院 上海 200240

王丽英, 2022年6月毕业于南华大学核科学技术学院, 获工学学士学位; 2022年9月至今为东华理工大学和中国科学院高能物理研究所联合培养研究生.

于吉攀, 副研究员. 2008年获江苏师范大学学士学位; 2011年获南开大学硕士学位; 2014年获清华大学博士学位; 2014年7月至2016年7月清华大学化学系博士后; 2016年7月加入中国科学院高能物理研究所核能放射化学实验室. 目前主要研究方向: 锕系元素化学.

刘峙嵘, 本科毕业于青岛理工大学, 博士毕业于中国原子能科学研究院. 在国内外学术期刊上发表百余篇学术论文、专利12项; 获省部级奖6项. 先后主持国家自然科学基金面上/地区项目/江西省自然科学基金项目/江西省科技支撑计划项目多项. 国家自然科学基金函评专家、中国博士后科学基金评审专家、中国博士后科学基金特别资助评审专家、教育部留学归国人员科研启动基金评审专家. 中国辐射防护学会环境放射化学分会理事、中国核学会锕系元素物理与化学分会理事、中国核学会核化工分会理事. Journal of Hazardous Materials、Environmental Science & Technology、Applied Surface Science 等国际学术刊物审稿专家.

石伟群, 上海交通大学特聘教授, 国家杰出青年科学基金获得者, 长期致力于核燃料循环化学相关基础研究. 在JACS、Angew. Chem.、Chem、Chem. Sci.、CCS Chem.、Nat. Commun.、Adv. Mater.等国际知名期刊发表SCI论文300余篇, 成果被国内外同行广泛关注和引用, 文章总引18000余次, H因子67 (Google Scholar), 2019~2023年每年均入选Elsevier中国高被引学者榜单(核科学技术). 分别担任期刊《Supramolecular Materials》副主编, 《Chinese Chemical Letters》、《Journal of Nuclear Fuel Cycle and Waste Technology》、《International Journal of Advanced Nuclear Reactor Design and Technology》和《Journal of Nuclear Science and Technology》的编委与国际顾问编委, 中文期刊《核化学与放射化学》编委. 现为中国核学会锕系物理与化学分会副理事长、中国有色金属学会熔盐化学与技术专业委员会副主任委员、中国化学会核化学与放射化学专业委员会委员、中国核学会核化工分会常务理事兼副秘书长.

收稿日期: 2024-12-20

  网络出版日期: 2025-02-17

基金资助

国家自然科学基金(U2067212); 国家自然科学基金(22176191); 国家杰出青年科学基金(21925603)

Advances in Porous Materials for Transuranic Element Separation

  • Liying Wang ,
  • Jipan Yu ,
  • Zhirong Liu ,
  • Weiqun Shi
Expand
  • a School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
    b Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
    c Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
    d School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2024-12-20

  Online published: 2025-02-17

Supported by

National Natural Science Foundation of China(U2067212); National Natural Science Foundation of China(22176191); National Science Fund for Distinguished Young Scholars(21925603)

摘要

分离-嬗变技术不仅减少了放射性废物的长期危害, 还降低了核废料处理过程中的环境风险. 超铀元素在高放废液中的相对毒性强且半衰期较长; 因此, 从高放废液中有效分离超铀元素是分离-嬗变的必要条件和关键技术之一. 吸附法由于操作简单, 不产生二次废物等优势受到广泛关注. 本文综合讨论了固相吸附材料的优势、面临的挑战以及可能的应用前景, 系统总结了无机多孔材料、碳基多孔材料、聚合物树脂、金属有机框架和共价有机框架等材料在超铀元素分离中的研究进展, 详细讨论了它们在吸附性能、选择性、稳定性和再生能力等方面的优势. 同时, 也指出了当前研究中存在的挑战及机器学习引导材料合成的前景, 这对于开发更高效、更环保的超铀元素吸附材料, 以及实现这些材料在实际核能处理中的应用, 具有重要的指导意义.

本文引用格式

王丽英 , 于吉攀 , 刘峙嵘 , 石伟群 . 多孔材料在超铀元素分离中的应用研究进展[J]. 化学学报, 2025 , 83(4) : 401 -414 . DOI: 10.6023/A24120376

Abstract

Nuclear energy, recognized as an efficient and stable power source, is poised to play an increasingly significant role in the global energy mix. The reprocessing of spent nuclear fuel is crucial in assessing whether nuclear energy can be deemed a sustainable form of energy. Among the various technologies involved, partitioning-transmutation technology not only reduces the long-term hazards associated with radioactive waste but also mitigates the environmental risks linked to the treatment of nuclear waste. The transuranic elements in high-level liquid waste (HLLW) possess relatively high toxicity and long half-lives. Therefore, the effective separation of transuranic elements from HLLW is a necessary condition and a key technology for separation-transmutation. Among the methods for the separation of actinides, solvent extraction has been widely applied due to its simplicity and low cost. However, this method also presents several challenges, such as the use of toxic or flammable solvents, the formation of emulsions, and the generation of large amounts of secondary organic hazardous waste. In contrast, solid-phase adsorption does not require organic solvents, thereby reducing the volume of solvents and the risk of secondary pollution. Moreover, the adsorption process can be conducted at ambient temperature and pressure, making it simple, low-cost, environmentally friendly, and regenerable. These advantages have contributed to its increasing popularity and research interest in recent years. However, the harsh conditions in HLLW present significant challenges in the development of solid-phase adsorbents. Despite many obstacles, advancements in solid-phase adsorbent materials for transuranic element separation have demonstrated considerable potential within the nuclear energy sector. This article provides a comprehensive analysis of the benefits, challenges, and prospective applications of solid-phase adsorbents. It offers a systematic review of research progress in various solid adsorbents, including inorganic porous materials, carbon-based porous materials, polymer resins, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs), specifically in the context of transuranic element separation. The review investigates their strengths in terms of adsorption performance, selectivity, stability, and regenerability. Additionally, it highlights research challenges such as the complexity of preparation, economic viability, and the scalability of production processes. This thorough analysis is instrumental in the development of more efficient and eco-friendly transuranic element adsorbent materials and in facilitating their integration into practical nuclear energy processing applications.

参考文献

[1]
Usman, O.; Ozkan, O.; Ike, G. N. J. Clean. Prod. 2024, 451, 142070.
[2]
Li, K.; Yan, C.-C.; Wang, J.-R.; Zhu, K.; Guo, J.-J.; Zhang, Y.-G.; Shi, G.-Z.; Yin, Y.-C.; Cheng, L.-W.; Sun, L.; Wang, Y.-M.; Zhang, H.-L.; Sun, Y.; Yuan, J.-Y.; Ma, W.-L.; Ji, G.-X.; Chai, Z.-F.; Wang, Y.-X.; Ouyang, X.-P.; Wang, S.-A. Nature 2024, 633, 811.
[3]
Bashir, M. F.; Ma, B.-L.; Sharif, A.; Ao, T.; Koca, K. Technol. Soc. 2023, 75, 102385.
[4]
Sadekin, S.; Zaman, S.; Mahfuz, M.; Sarkar, R. Energy Procedia 2019, 160, 513.
[5]
Poumadère, M.; Bertoldo, R.; Samadi, J. WIREs Clim. Change 2011, 2, 712.
[6]
Myasoedov, B. F.; Kalmykov, S. N.; Kulyako, Yu. M.; Vinokurov, S. E. Geochem. Int. 2016, 54, 1156.
[7]
Rodríguez-Penalonga, L.; Moratilla Soria, B. Energies 2017, 10, 1235.
[8]
Madic, C.; Boullis, B.; Baron, P.; Testard, F.; Hudson, M. J.; Liljenzin, J.-O.; Christiansen, B.; Ferrando, M.; Facchini, A.; Geist, A.; Modolo, G.; Espartero, A. G.; De Mendoza, J. J. Alloys Compd. 2007, 444-445, 23.
[9]
Ewing, R. C. Mineral. Mag. 2011, 75, 2359.
[10]
Modolo, G.; Wilden, A.; Geist, A.; Magnusson, D.; Malmbeck, R. Radiochim. Acta 2012, 100, 715.
[11]
Abderrahim, H. A.; Giot, M. Sustainability 2021, 13, 12643.
[12]
Salvatores, M. Nucl. Eng. Des. 2005, 235, 805.
[13]
Chen, J.; Wang, J.-C. Prog. Chem. 2011, 23, 1366. (in Chinese)
[13]
(陈靖, 王建晨, 化学进展, 2011, 23, 1366.)
[14]
Veliscek-Carolan, J. J. Hazard. Mater. 2016, 318, 266.
[15]
Zhang, H.-L.; Li, A.; Li, K.; Wang, Z.-P.; Xu, X.-C.; Wang, Y.-X.; Sheridan, M. V.; Hu, H.-S.; Xu, C.; Alekseev, E. V.; Zhang, Z.-Y.; Yan, P.; Cao, K.-C.; Chai, Z.-F.; Albrecht-Sch?nzart, T. E.; Wang, S.-A. Nature 2023, 616, 482.
[16]
Du, X.-W.; Ye, Q.-Z.; Xu, M.; Wan, Y.-X.; Peng, X.-J.; Su, G.; Yang, Y.; Gao, X.; Shi, X.-M. Chin. J. Eng. Sci. 2018, 20, 17. (in Chinese)
[16]
(杜祥婉, 叶奇蓁, 徐銤, 万元熙, 彭先觉, 苏罡, 杨勇, 高翔, 师学明, 中国工程科学, 2018, 20, 17.)
[17]
Miguirditchian, M.; Vanel, V.; Marie, C.; Pacary, V.; Charbonnel, M.-C.; Berthon, L.; Hérès, X.; Montuir, M.; Sorel, C.; Bollesteros, M.-J.; Costenoble, S.; Rostaing, C.; Masson, M.; Poinssot, C. Solvent Extr. Ion Exch. 2020, 38, 365.
[18]
Magnusson, D.; Christiansen, B.; Glatz, J.; Malmbeck, R.; Modolo, G.; Serrano‐Purroy, D.; Sorel, C. Solvent Extr. Ion Exch. 2009, 27, 26.
[19]
Serrano-Purroy, D.; Baron, P.; Christiansen, B.; Glatz, J.-P.; Madic, C.; Malmbeck, R.; Modolo, G. Sep. Purif. Technol. 2005, 45, 157.
[20]
Takao, K.; Ikeda, Y. Eur. J. Inorg. Chem. 2020, 2020, 3443.
[21]
De Jesus, K.; Rodriguez, R.; Baek, D. L.; Fox, R. V.; Pashikanti, S.; Sharma, K. J. Mol. Liq. 2021, 336, 116006.
[22]
Zhang, Y.; Li, X.; Wang, W.-T. J. Nucl. Radiochem. 2024, 46, 37. (in Chinese)
[22]
(张烨, 李想, 王文涛, 核化学与放射化学, 2024, 46, 37.)
[23]
Zu, J.-H.; Fu, L.-X.; Pan, X.-H.; Wang, H. Nucl. Tech. 2020, 43, 34. (in Chinese)
[23]
(俎建华, 付凌霄, 潘晓晗, 王焕, 核技术, 2020, 43, 34.)
[24]
Chi, Z.-X.; Luo, S.; Tian, J.-L.; Jiang, C.-X.; Zhou, J.-L.; Deng, Y.; Pan, Q. Appl. Chem. Ind. 2019, 48, 656. (in Chinese)
[24]
(池哲鑫, 罗爽, 田景林, 姜春雪, 周江林, 邓煜, 潘茜, 应用化工, 2019, 48, 656.)
[25]
Meng, Y.; Ni, S.; Liu, Y.-F.; Wang, W.-J.; Zhao, Y.; Zhu, Y.-D.; Yang, L.-R. CIESC J. 2024, 75, 1616. (in Chinese)
[25]
(孟园, 倪善, 刘亚锋, 王文杰, 赵越, 朱育丹, 杨良嵘, 化工学报, 2024, 75, 1616.)
[26]
Xu, Y.; Wang, P.; Zhao, M.; Niu, Z.-W.; Pan, D.-Q.; Wu, W.-S. At. Energy Sci. Technol. 2019, 53, 1773. (in Chinese)
[26]
(徐杨, 王鹏, 赵敏, 牛智伟, 潘多强, 吴王锁, 原子能科学技术, 2019, 53, 1773.)
[27]
Xie, Y.-H.; Yu, L.; Chen, L.; Chen, C.; Wang, L.; Liu, F.-L.; Liao, Y.; Zhang, P.; Chen, T.; Yuan, Y.-H.; Lu, Y.-X.; Huang, B.-Y.; Yang, H.; Wang, S.-H.; Wang, S.-A.; Ma, L.-J.; Luo, F.; Liu, Y.-H.; Hu, B.-W.; Wang, H.-Q.; Pan, D.-Q.; Zhu, W.-K.; Wang, N.; Wang, Z.; Mao, L.; Ma, S.-Q.; Wang, X.-K. Sci. China Chem. 2024, 67, 3515.
[28]
Khayambashi, A.; Chen, L.; Dong, X.; Li, K.; Wang, Z.-P.; He, L.-W.; Annam, S.; Chen, L.-X.; Wang, Y.-X.; Sheridan, M. V.; Xu, C.; Wang, S.-A. Chin. Chem. Lett. 2022, 33, 3429.
[29]
Li, X.-B.; Wu, Q.-Y.; Wang, C.-Z.; Lan, J.-H.; Zhang, M.; Shi, W.-Q. Chin. Chem. Lett. 2024, 35, 109359.
[30]
Mikeska, E. R.; Wilson, R. E.; Sen, A.; Autschbach, J.; Blakemore, J. D. J. Am. Chem. Soc. 2024, 146, 21509.
[31]
Dong, X.; Xu, C.; Chen, J. Bull. Chem. 2022, 83, 289. (in Chinese)
[31]
(董雪, 徐超, 陈靖, 化学通报, 2022, 83, 289.)
[32]
Wang, Y.-H.; Li, W.; Luo, S.; Liu, S.-X.; Ma, C.-H.; Li, J. Acta Chim. Sinica 2018, 76, 85. (in Chinese)
[32]
(王引航, 李伟, 罗沙, 刘守新, 马春慧, 李坚, 化学学报, 2018, 76, 85.)
[33]
Xu, H.; Wang, C.-Z.; Liu, Z.-R.; Shi, W.-Q. Acta Chim. Sinica 2024, 82, 458. (in Chinese)
[33]
(徐晗, 王聪芝, 刘峙嵘, 石伟群, 化学学报, 2024, 82, 458.)
[34]
Barbette, F.; Rascalou, F.; Chollet, H.; Babouhot, J. L.; Denat, F.; Guilard, R. Anal. Chim. Acta 2004, 502, 179.
[35]
Meyer, D. J. M.; Bourg, S.; Conocar, O.; Broudic, J.-C.; Moreau, J. J. E.; Chi Man, M. W. Comptes Rendus Chim. 2007, 10, 1001.
[36]
Ning, S.-Y.; Zou, Q.; Wang, X.-P.; Liu, R.-Q.; Wei, Y.-Z.; Zhao, Y.-P.; Ding, Y.-Q. J. Radioanal. Nucl. Chem. 2016, 307, 993.
[37]
Ning, S.-Y.; Zhang, S.-C.; Zhou, J.; Zhang, W.; Wei, Y.-Z. J. Radioanal. Nucl. Chem. 2019, 322, 1023.
[38]
Ning, S.-Y.; Wang, X.-P.; Zou, Q.; Shi, W.-Q.; Tang, F.-D.; He, L.-F.; Wei, Y.-Z. Sci. Rep. 2017, 7, 14679.
[39]
Ning, S.-Y.; Zhou, J.; Zhang, S.-C.; Zhang, W.; Wei, Y.-Z. Radiochim. Acta 2020, 108, 425.
[40]
Li, H.-B.; Ye, G.-A.; Wang, X.-R.; Lin, C.-S.; Su, Z.; Liu, Z.-Y.; Zhao, X.-H. J. Nucl. Radiochem. 2010, 32, 65. (in Chinese)
[40]
(李辉波, 叶国安, 王孝荣, 林灿生, 苏哲, 刘占元, 赵兴红, 核化学与放射化学, 2010, 32, 65.)
[41]
Wang, Z.; Liu, M.-C.; Wang, L.; Chang, Z.-Y.; Li, H.-B. Molecules 2022, 27, 3110.
[42]
Lin, Y.-H.; Fiskum, S. K.; Yantasee, W.; Wu, H.; Mattigod, S. V.; Vorpagel, E.; Fryxell, G. E.; Raymond, K. N.; Xu, J.-D. Environ. Sci. Technol. 2005, 39, 1332.
[43]
Fryxell, G. E.; Lin, Y.-H.; Fiskum, S.; Birnbaum, J. C.; Wu, H.; Kemner, K.; Kelly, S. Environ. Sci. Technol. 2005, 39, 1324.
[44]
Burns, J. D.; Clearfield, A.; Borkowski, M.; Reed, D. T. Radiochim. Acta 2012, 100, 381.
[45]
Cao, S.-W.; Yu, J.-G. J. Photochem. Photobiol. C Photochem. Rev. 2016, 27, 72.
[46]
Yang, D.; Shi, X.-F.; Zhang, Y.-J.; Bu, X.-H. Acta Chim. Sinica 2023, 81, 1052. (in Chinese)
[46]
(杨地, 史潇凡, 张冀杰, 卜显和, 化学学报, 2023, 81, 1052.)
[47]
Parsons-Moss, T.; Wang, J.-X.; Jones, S.; May, E.; Olive, D.; Dai, Z.-R.; Zavarin, M.; Kersting, A. B.; Zhao, D.-Y; Nitsche, H. J. Mater. Chem. A 2014, 2, 11209.
[48]
Kumar, P.; Sengupta, A.; Singha Deb, A. K.; Dasgupta, K.; Ali, S. M. RSC Adv. 2016, 6, 107011.
[49]
Chappa, S.; Singha Deb, A. K.; Ali, S. M.; Debnath, A. K.; Aswal, D. K.; Pandey, A. K. J. Phys. Chem. B 2016, 120, 2942.
[50]
Wang, Z.-P.; Huang, L.-Q.; Dong, X.; Wu, T.; Qing, Q.; Chen, J.; Lu, Y.-X.; Xu, C. Nat. Commun. 2023, 14, 261.
[51]
Mazzoldi, P.; Carturan, S.; Quaranta, A.; Sada, C.; Sglavo, V. M. Riv. Nuovo Cimento 2013, 36, 397.
[52]
Rao, T. P.; Praveen, R. S.; Daniel, S. Crit. Rev. Anal. Chem. 2004, 34, 177.
[53]
Hubscher-Bruder, V.; Haddaoui, J.; Bouhroum, S.; Arnaud-Neu, F. Inorg. Chem. 2010, 49, 1363.
[54]
Zhang, A.-Y.; Kuraoka, E.; Hoshi, H.; Kumagai, M. J. Chromatogr. A 2004, 1061, 175.
[55]
Ansari, S.; Pathak, P.; Husain, M.; Prasad, A.; Parmar, V.; Manchanda, V. Talanta 2006, 68, 1273.
[56]
Husain, M.; Ansari, S. A.; Mohapatra, P. K.; Gupta, R. K.; Parmar, V. S.; Manchanda, V. K. Desalination 2008, 229, 294.
[57]
Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149.
[58]
Horwitz, E. P.; McAlister, D. R.; Bond, A. H.; Barrans, R. E. Solvent Extr. Ion Exch. 2005, 23, 319.
[59]
Deepika, P.; Sabharwal, K. N.; Srinivasan, T. G.; Vasudeva Rao, P. R. Nucl. Technol. 2012, 179, 407.
[60]
Sreenivasulu, B.; Brahmananda Rao, C. V. S.; Suresh, A.; Sivaraman, N. J. Radioanal. Nucl. Chem. 2022, 331, 3623.
[61]
Pathak, S. K.; Tripathi, S. C.; Singh, K. K.; Mahtele, A. K.; Kumar, M.; Gandhi, P. M. J. Radioanal. Nucl. Chem. 2016, 308, 47.
[62]
Ruhela, R.; Panja, S.; Singh, A. K.; Dhami, P. S.; Gandhi, P. M. J. Hazard. Mater. 2016, 318, 186.
[63]
Singh, K. K.; Panja, S.; Ruhela, R.; Kumar, M.; Tripathi, S. C.; Singh, A. K.; Chakravartty, J. K.; Bajaj, P. N. Sep. Purif. Technol. 2015, 154, 186.
[64]
Pribyl, J. G.; Taylor-Pashow, K. M. L.; Shehee, T. C.; Benicewicz, B. C. ACS Omega 2018, 3, 8181.
[65]
James, S. L. Chem. Soc. Rev. 2003, 32, 276.
[66]
Zhou, H.-C.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415.
[67]
Maurin, G.; Serre, C.; Cooper, A.; Férey, G. Chem. Soc. Rev. 2017, 46, 3104.
[68]
Abdul Hamid, M. R.; Shean Yaw, T. C.; Mohd Tohir, M. Z.; Wan Abdul Karim Ghani, W. A.; Sutrisna, P. D.; Jeong, H.-K. J. Ind. Eng. Chem. 2021, 98, 17.
[69]
Yuan, S. H.; Isfahani, A. P.; Yamamoto, T.; Muchtar, A.; Wu, C. Y.; Huang, G.; You, Y. C.; Sivaniah, E.; Chang, B. K.; Ghalei, B. Small Methods 2020, 4, 2000021.
[70]
Rowsell, J. L. C.; Yaghi, O. M. Microporous Mesoporous Mater. 2004, 73, 3.
[71]
Zhao, G.-G.; Qin, N.-Q.; Pan, A.; Wu, X.-Y.; Peng, C.-Y.; Ke, F.; Iqbal, M.; Ramachandraiah, K.; Zhu, J. J. Nanomater. 2019, 2019, 1.
[72]
Jin, K.; Lee, B.; Park, J. Coord. Chem. Rev. 2021, 427, 213473.
[73]
Patra, K.; Ansari, S. A.; Mohapatra, P. K. J. Chromatogr. A 2021, 1655, 462491.
[74]
Acher, E.; Hacene Cherkaski, Y.; Dumas, T.; Tamain, C.; Guillaumont, D.; Boubals, N.; Javierre, G.; Hennig, C.; Solari, P. L.; Charbonnel, M.-C. Inorg. Chem. 2016, 55, 5558.
[75]
Zhang, N.; Yuan, L.-Y.; Guo, W.-L.; Luo, S.-Z.; Chai, Z.-F.; Shi, W.-Q. ACS Appl. Mater. Interfaces 2017, 9, 25216.
[76]
Guo, X.-G.; Qiu, S.; Chen, X.-T.; Gong, Y.; Sun, X.-Q. Inorg. Chem. 2017, 56, 12357.
[77]
Li, B.-Y.; Zhang, Y.-M.; Ma, D.-X.; Shi, Z.; Ma, S.-Q. Nat. Commun. 2014, 5, 5537.
[78]
Xiong, L.-P.; Gu, M.; Yang, C.-T.; Lv, K.; Wu, F.-C.; Hu, S.; Long, X.-G. Chem. Eng. J. 2022, 430, 132753.
[79]
Zhao, X.-L.; Yu, X.-Z.; Wang, X.-Y.; Lai, S.-J.; Sun, Y.-Y.; Yang, D.-J. Chem. Eng. J. 2021, 407, 127221.
[80]
Xiong, L.-P.; Lv, K.; Gu, M.; Yang, C.-T.; Wu, F.-C.; Han, J.; Hu, S. Chem. Eng. J. 2019, 355, 159.
[81]
Qi, S.-Z.; Xiong, S.-S.; Xiong, L.-P.; Li, H.; Liu, B.-Y.; Liu, Y.; Xiong, K.; Yan, H.; Lv, K.; Liu, H.-W.; Hu, S. Inorg. Chem. 2023, 62, 10881.
[82]
Xiong, L.-P.; Lyu, K.; Zeng, Y.-Y.; Yang, C.-T.; Chi, F.-T.; Hu, S.; Long, X.-G. J. Environ. Chem. Eng. 2023, 11, 109619.
[83]
C?té, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.
[84]
Wang, H.-M.; Ding, H.-M.; Meng, X.-S.; Wang, C. Chin. Chem. Lett. 2016, 27, 1376.
[85]
Li, T.; Pan, Y.; Shao, B.-B.; Zhang, X.-S.; Wu, T.; He, Q.-Y.; He, M.; Ge, L.; Zhou, L.-F.; Liu, S.; Zheng, X.-M.; Ye, J.; Liu, Z.-F. Adv. Funct. Mater. 2023, 33, 2304990.
[86]
El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; C?té, A. P.; Taylor, R. E.; O’Keeffe, M.; Yaghi, O. M. Science 2007, 316, 268.
[87]
Yu, J.-P.; Yuan, L.-Y.; Wang, S.; Lan, J.-H.; Zheng, L.-R.; Xu, C.; Chen, J.; Wang, L.; Huang, Z.-W.; Tao, W.-Q.; Liu, Z.-R.; Chai, Z.-F.; Gibson, J. K.; Shi, W.-Q. CCS Chem. 2019, 1, 286.
[88]
Zhang, H.-D.; Wang, S.; Yu, J.-P.; Li, Z.-J.; Lan, J.-H.; Zheng, L.-R.; Liu, S.-Y.; Yuan, L.-Y.; Xiu, T.-Y.; Wang, J.-D.; Wang, X.-P.; Shi, W.-Q. Chem. Eng. J. 2023, 463, 142408.
[89]
Cao, R.-J.; Zhou, H.-Y.; Wu, Q.-Y.; Xiao, Z.; Xiu, T.-Y.; Li, J.; Tang, H.-B.; Yuan, L.-Y.; Wu, W.-S.; Shi, W.-Q. Adv. Mater. 2024, 2414659.
[90]
Wang, L.-Y.; Yu, J.-J.; Wang, S.; Liu, Y.; Song, K.-X.; Yu, J.-P.; Yuan, L.-Y.; Liu, Z.-R.; Shi, W.-Q. Chin. Chem. Lett. 2024, 110706.
[91]
Merchant, A.; Batzner, S.; Schoenholz, S. S.; Aykol, M.; Cheon, G.; Cubuk, E. D. Nature 2023, 624, 80.
[92]
Qiu, R.-Z.; Tang, J.; Chen, J.-F.; Liu, P.-C.; Wang, Q. Phys. Chem. Chem. Phys. 2024, 26, 14122.
[93]
Zhao, J.-J. Physics 2024, 53, 450. (in Chinese)
[93]
(赵纪军, 物理, 2024, 53, 450.)
[94]
Lu, M.-Y.; Ji, H.-N.; Zhao, Y.; Chen, Y.-X.; Tao, J.-D.; Ou, Y.-Y.; Wang, Y.; Huang, Y.; Wang, J.-L.; Hao, G.-L. ACS Appl. Mater. Interfaces 2023, 15, 1871.
[95]
Dangayach, R.; Jeong, N.; Demirel, E.; Uzal, N.; Fung, V.; Chen, Y.-S. Environ. Sci. Technol. 2025, 59, 993.
[96]
Zhu, C.-L.; Bamidele, E. A.; Shen, X.-Y.; Zhu, G.-M.; Li, B.-W. Chem. Rev. 2024, 124, 4258.
[97]
Liu, T.-Y.; Johnson, K. R.; Jansone-Popova, S.; Jiang, D.-E. JACS Au 2022, 2, 1428.
[98]
Zhang, Z.-Y.; Cheng, M.; Xiao, X.-Y.; Bi, K.-X.; Song, T.; Hu, K.-Q.; Dai, Y.-Y.; Zhou, L.; Liu, C.; Ji, X.; Shi, W.-Q. ACS Appl. Mater. Interfaces 2022, 14, 33076.
[99]
Wang, B.-B.; Zhang, Z.-Y.; Dong, Y.; Qiu, Y.-Q.; Ren, J.-Y.; Bi, K.-X.; Ji, X.; Liu, C.; Zhou, L.; Dai, Y.-Y. Inorg. Chem. 2023, 62, 13293.
[100]
Zhang, Z.-Y.; Dong, Y.; Qiu, Y.-Q.; Bi, K.-X.; Hu, K.-Q.; Dai, Y.-Y.; Zhou, L.; Liu, C.; Ji, X.; Shi, W.-Q. J. Nucl. Radiochem. 2023, 45, 456. (in Chinese)
[100]
(张智渊, 董越, 邱雨晴, 毕可鑫, 胡孔球, 戴一阳, 周利, 刘冲, 吉旭, 石伟群, 核化学与放射化学, 2023, 45, 456.)
文章导航

/