三维石墨烯/富含氧空位Fe2O3复合材料的构建实现超级电容器超高能量密度
收稿日期: 2024-12-17
网络出版日期: 2025-02-19
基金资助
国家自然科学基金(22462023); 内蒙古自然科学基金(2020ZD17); 内蒙古自然科学基金(2021MS05011); 内蒙古自治区直属高校基本科研业务费项目(2023QNJS018); 内蒙古自治区直属高校基本科研业务费项目(2024YXXS038); 内蒙古自治区高校创新科研团队项目(NMGIRT2215)
Construction of Three-dimensional Graphene/oxygen-enriched Vacancy Fe2O3 Composites to Realize Ultra-high Energy Density of Supercapacitors
Received date: 2024-12-17
Online published: 2025-02-19
Supported by
National Natural Science Foundation of China(22462023); Natural Science Foundation of Inner Mongolia(2020ZD17); Natural Science Foundation of Inner Mongolia(2021MS05011); basic research funds for universities directly under Inner Mongolia Autonomous Region(2023QNJS018); basic research funds for universities directly under Inner Mongolia Autonomous Region(2024YXXS038); Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region, China(NMGIRT2215)
氧化铁(Fe2O3)具有高的理论电容, 氧空位工程策略可改善其导电率低的不足, 将含氧空位的Fe2O3 (OV-Fe2O3)与高导电率的石墨烯复合, 有望获得高能量密度. 本研究在水热还原条件下采用络合-还原法构建三维还原氧化石墨烯/OV-Fe2O3 (3D rGO/OV-Fe2O3)复合材料. 通过形貌观察, 纳米级OV-Fe2O3呈不规则几何多面体在3D rGO表面或三维孔隙内均匀分布. X射线衍射谱、电子顺磁共振谱和X射线光电子能谱表明Fe2O3中氧空位的存在. 电化学测试表明, 3D rGO/OV-Fe2O3比电容高达928.3 F•g−1. 组装的非对称超级电容器3D rGO/OV-Fe2O3||3D rGO的能量密度高达95.1 Wh•kg−1, 20000次循环后的电容保持率达94%. 3D rGO/OV-Fe2O3||3D rGO理想的超电容性能归因于Fe2O3晶格结构中氧空位的产生改善了Fe2O3的导电率, 同时3D rGO的构建也为OV-Fe2O3提供了三维导电通道. 3D rGO/OV-Fe2O3作为超级电容器电极材料具有广阔前景.
孙伟 , 辛国祥 , 刘飞 , 鞠藤 , 程宇通 , 宋金玲 , 包金小 , 布林朝克 . 三维石墨烯/富含氧空位Fe2O3复合材料的构建实现超级电容器超高能量密度[J]. 化学学报, 2025 , 83(3) : 256 -265 . DOI: 10.6023/A24120372
Iron trioxide (Fe2O3) possesses the high theoretical capacitance, and the improvement of its deficiency of low electric conductivity can be performed by the oxygen vacancy engineering strategy. The combination of Fe2O3 with oxygen vacancies (OV-Fe2O3) and graphene with high conductivity is expected to obtain high energy density. In this study, the construction of three-dimensional reduced graphene oxide/OV-Fe2O3 (3D rGO/OV-Fe2O3) composite is completed through the complexation-reduction method under the hydrothermal reduction condition. The typical synthesis procedure is described as follows. First, 0.6 g of Fe(NO3)3•9H2O was dissolved into 15 mL of deionized water, then added 0.27 g of polyethylene glycol-2000, stirred for 10 min, and then added 12.5 mL of GO solution (8 mg•mL−1). After stirring the mixed solution for 20 min and ultrasonic vibration for 20 min, 2 mL of hydrazine hydrate was added into the mixing solution, and then stirred for 20 min and ultrasonically vibrated for 20 min again. Subsequently, the prepared mixed solution was transferred into a reactor for hydrothermal reaction. The reaction temperature was retained 180 ℃ for 12 h. After the hydrothermal reaction, the obtained sample was washed with deionized water and finally placed in a freeze dryer for 24 h to obtain the 3D rGO/OV-Fe2O3 composite. The nano-scaled OV-Fe2O3 shows the irregular geometric polyhedrons by the observation of morphology, which was uniformly distributed on the surface of 3D rGO or within the three-dimensional pores. The presence of oxygen vacancies is indicated via the X-ray diffraction pattern, electron paramagnetic resonance spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical tests manifest that the specific capacitance of 3D rGO/OV-Fe2O3 is as high as 928.3 F•g−1. The assembled asymmetric supercapacitor 3D rGO/OV-Fe2O3||3D rGO delivers an ultra-high energy density up to 95.1 Wh•kg−1. The capacitance retention rate is 94% after 20000 cycles. The ideal supercapacitive performance of 3D rGO/OV-Fe2O3||3D rGO is attributed to the improvement of the electrical conductivity of Fe2O3 due to the creation of oxygen vacancies in its lattice structure and the providing of three-dimensional conducting channels owing to the construction of 3D rGO. As supercapacitor electrode material, the 3D rGO/OV-Fe2O3 has a broad prospect.
| [1] | Chen, Y. C.; Kang, C. X.; Ma, L.; Fu, L. K.; Li, G. H.; Hu, Q.; Liu, Q. M. Chem. Eng. J. 2021, 417, 129243. |
| [1] | Kumar, R.; Thangappan, R.; Ran, F.; Sambasivam, S.; Albaqami, M. D.; Mohammad, S. J. Energy Storage 2024, 85, 111075. |
| [2] | Wu, C. X.; Zhang, Z. F.; Chen, Z. H.; Jiang, Z. M.; Li, H. Y.; Cao, H. J.; Liu, Y. S.; Zhu, Y. Y.; Fang, Z. B.; Yu, X. R. Nano Res. 2021, 14, 953. |
| [3] | Li, X.; Li, X. Acta Chim. Sinica 2023, 81, 511 (in Chinese). |
| [3] | (李西安, 李孝坤, 化学学报, 2023, 81, 511.) |
| [4] | Mohite, D. D.; Chavan, S. S.; Dubal, S.; Karandikar, P. B. Chem. Soc. Rev. 2023, 13, 120703. |
| [5] | Zhong, M.; Zhang, M.; Li, X. Carbon Energy 2022, 4, 950. |
| [6] | Jacob, O. B.; Appiagyei, A. B.; Han, J. I. Ceram. Int. 2021, 47, 23665. |
| [7] | Vigneshwaran, J.; Abraham, S.; Muniyandi, B.; Prasankumar, T.; Li, J. T.; Jose, S. Surf. Interfaces 2021, 27, 101572. |
| [8] | Orisekeh, K.; Singh, B.; Olanrewaju, Y.; Kigozi, M.; Ihekweme, G.; Umar, S.; Anye, V.; Bello, A.; Parida, S.; Soboyejo, W. O. J. Energy Storage 2021, 33, 102042. |
| [9] | Zhu, K.; Shi, F.; Zhu, X.; Yang, W. Nano Energy 2020, 73, 104761. |
| [10] | Krishnan, A.; Ajay, R.; Anakha, J.; Namboothiri, U. S. K. Surf. Interfaces 2022, 30, 101942. |
| [11] | Aalim, M.; Shah, M. A. Vacuum 2023, 210, 111903. |
| [12] | Xiong, S. S.; Lin, X. M.; Liu, S.; Weng, S. T.; Jiang, S. Y.; Jiao, Y.; Xu, Y. C.; Cheng, J. R. Vacuum 2020, 182, 109692. |
| [13] | Prakash, J.; Prema, D.; Venkataprasanna, K. S.; Balagangadharan, K.; Selvamurugan, N.; Venkatasubbu, G. D. Int. J. Biol. Macromol. 2020, 154, 62. |
| [14] | Ma, X. T.; Wang, S.; Wang, H.; Ding, J. J.; Liu, S.; Huang, Z. X.; Sun, W. Z.; Liu, G. J.; Wang, L.; Xu, W. L. J. Energy Storage 2022, 56, 106034. |
| [15] | Igarashi, D.; Tanaka, Y.; Kubota, K.; Tatara, R.; Maejima, H.; Hosaka, T.; Komaba, S. Adv. Energy Mater. 2023, 13, 2302647. |
| [16] | Han, Y. J.; Wang, H. X.; Huang, D. M.; Wang, P. F.; Zhang, J. L.; Ren, X. B.; Meng, Y.; Lv, B. L. Appl. Surf. Sci. 2023, 638, 158056. |
| [17] | Cao, Z. M.; Jiang, Z. W.; Cao, L. P.; Wang, Y.; Feng, C. H.; Huang, C. Z.; Li, Y. F. Talanta 2021, 221, 121616. |
| [18] | Rahaman, S.; Raza, A.; Lone, A.; Muaz, M.; Zaidi, S.; Adeeb, M.; Sama, F.; Pandey, K.; Ahmad, A. Phys. Chem. Chem. Phys. 2024, 26, 16273. |
| [19] | De Silva, K. K. H.; Huang, H. H.; Joshi, R.; Yoshimura, M. Carbon 2020, 166, 74. |
| [20] | Huang, X. S.; Yin, R.; Qian, L.; Zhao, W.; Liu, H.; Liu, C. T.; Fan, J. C.; Hou, H.; Zhang, J. X.; Guo, Z. H. Ceram. Int. 2019, 45, 17784. |
| [21] | Xin, G.; Zhai, Y.; Xing, Y.; Sun, W.; Liu, J.; Hu, W.; Song, J.; Bunlin, C.; Zhang, B.; Liu, X. J. Alloy. Compd. 2023, 945, 169345. |
| [22] | Tan, Q. K.; Bao, S. C.; Kong, X. L.; Zheng, X.; Xu, Z. G.; Hu, Y. X.; Liu, X. H.; Wang, C.; Xu, B. H. J. Colloid. Interf. Sci. 2021, 590, 580. |
| [23] | Zhang, M.; Sha, J.; Miao, X.; Liu, E.; Shi, C.; Li, J.; He, C.; Li, Q.; Zhao, N. J. Alloy. Compd. 2017, 696, 956. |
| [24] | Wu, Y.; Pang, A.; Hu, L.; He, G.; Zhang, Y.; Zhang, L.; Li, M.; Ma, Z. Acta Chim. Sinica 2020, 78, 337 (in Chinese). |
| [24] | (武艳, 庞爱民, 胡磊, 何根升, 张莹莹, 张利雄, 李明海, 马振叶, 化学学报, 2020, 78, 337.) |
| [25] | Lei, F.; Sun, Y.; Liu, K.; Gao, S.; Liang, L.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2014, 136, 6826. |
| [26] | Shin, Y.; Doh, K. Y.; Kim, S. H.; Lee, J. H.; Bae, H.; Song, S. J.; Lee, D. J. Mater. Chem. A 2020, 8, 4784. |
| [27] | Xu, M.; Wang, A.; Xiang, Y.; Niu, J. J. Clean. Prod. 2021, 315, 128110. |
| [28] | Song, Z.; Liu, W.; Wei, W.; Quan, C.; Sun, N.; Zhou, Q.; Liu, G.; Wen, X. J. Alloy. Compd. 2016, 685, 355. |
| [29] | Liang, X. S.; Wang, L. S.; Wen, T. C.; Liu, H. J.; Zhang, J.; Liu, Z.; Zhu, C. Z.; Long, C. Sci. Total Environ. 2022, 804, 150161. |
| [30] | Tang, X.; Jia, R. Y.; Zhai, T.; Xia, H. ACS Appl. Mater. Inter. 2015, 7, 27518. |
| [31] | Yan, Y. Z.; Tang, H. L.; Wu, F.; Wang, R.; Pan, M. Energies 2017, 10, 1296. |
| [32] | Arulkumar, E.; Thanikaikarasan, S. J. Alloy. Compd. 2024, 998, 175008. |
| [33] | Wang, Y.; Zhang, M.; Pan, D.; Li, Y.; Ma, T.; Xie, J. Electrochim. Acta 2018, 266, 242. |
| [34] | Zhai, P.; Xia, M.; Wu, Y.; Zhang, G.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Fan, Z.; Wang, C.; Zhang, X.; Miller, J. T.; Sun, L.; Hou, J. Nat. Commun. 2021, 12, 248289. |
| [35] | Gogoi, R.; Singh, A.; Moutam, V.; Sharma, L.; Sharma, K.; Halder, A.; Siril, P. F. J. Environ. Chem. Eng. 2022, 10, 106649. |
| [36] | Ahmad, I.; Ahmed, J.; Batool, S.; Zafar, M. N.; Hanif, A.; Zahidullah; Nazar, M. F.; Ul-Hamid, A.; Jabeen, U.; Dahshan, A.; Idrees, M.; Shehzadi, S. A. J. Alloy. Compd. 2022, 894, 162409. |
| [37] | Zhang, L.; Fang, Q.; Huang, Y.; Xu, K.; Chu, P.; Ma, F. Anal. Chem. 2018, 90, 9821. |
| [38] | Liu, J.; Chen, G.; Chen, Y.; Jiang, J.; Xiao, X.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2023, 81, 709 (in Chinese). |
| [38] | (刘佳, 陈光海, 陈轶群, 江杰涛, 肖霄, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2023, 81, 709.) |
| [39] | Wei, S.; Li, Z.; Meng, S.; Zhu, X.; Lu, X.; Su, Q.; Wang, Y. Acta Materiae Compositae Sinica 2023, 40, 5736 (in Chinese). |
| [39] | (魏帅, 李朝霞, 孟淑娟, 朱星臣, 卢新宇, 苏琼, 王彦斌, 复合材料学报, 2023, 40, 5736.) |
| [40] | Akbar, A. R.; Peng, G.; Li, Y.; Iqbal, R.; Saleem, A.; Wang, G.; Khan, A. S.; Ali, M.; Tahir, M.; Assiri, M. A.; Ali, G.; Liu, F. Small 2023, 19, 2304686. |
| [41] | Pu, X.; Zhao, D.; Fu, C.; Chen, Z.; Cao, S.; Wang, C.; Cao, Y. Angew. Chem. Int. Ed. 2021, 60, 21310. |
| [42] | Wang, X.; Hao, C.; Zhang, J.; Ni, C.; Wang, X.; Shen, Y. J. Power Sources 2022, 539, 231594. |
| [43] | Kim, J.; Jung, Y.; Kim, S. Carbon Lett. 2019, 29, 411. |
| [44] | Zhang, Y.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J. Chem. Eng. J. 2022, 428, 131204. |
| [45] | Gao, R.; Li, G.; Chen, Y.; Zeng, Y.; Zhao, J.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2021, 79, 755 (in Chinese). |
| [45] | (高润洲, 李国昌, 陈轶群, 曾誉, 赵杰, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2021, 79, 755.) |
| [46] | Wang, X.; Liu, J.; Hu, Y.; Ma, R.; Wang, J. Sci. China Mater. 2022, 65, 1421. |
| [47] | Yan, S.; Luo, S.; Feng, J.; Li, P.; Guo, R.; Wang, Q.; Zhang, Y.; Liu, Y.; Bao, S. Chem. Eng. J. 2020, 381, 122695. |
| [48] | Zhao, F.; Song, F.; Chen, Q. Appl. Surf. Sci. 2021, 561, 150063. |
| [49] | Liu, W.; Zhu, M.; Liu, J.; Li, X.; Liu, J. Chinese Chem. Lett. 2019, 30, 750. |
| [50] | Tian, S.; Zhang, B.; Han, D.; Gong, Z.; Li, X. Nanomaterials 2022, 12, 213819. |
| [51] | Tian, Y.; Lin, L.; Chen, S.; Zhu, S.; Zhang, H.; Yu, W.; Ning, H.; Hu, N. J. Energy Storage 2021, 42, 103123. |
| [52] | Zhang, D.; Shao, Y.; Kong, X.; Jiang, M.; Lei, X. Chem. Eng. J. 2018, 349, 491. |
| [53] | Gholipour-Ranjbar, H.; Ganjali, M.; Norouzi, P.; Naderi, H. Ceram. Int. 2016, 42, 12097. |
/
| 〈 |
|
〉 |