综述

壳聚糖基抗菌纤维的制备及应用研究

  • 邹祺名 ,
  • 吴振 ,
  • 崔宁 ,
  • 张泽天 ,
  • 王国杰
展开
  • a 北京科技大学 材料科学与工程学院 北京 100083
    b 中国纺织科学研究院有限公司 北京 100025
    c 生物基纤维材料全国重点实验室 北京 100025

邹祺名,北京科技大学2022级硕士研究生,研究方向:可降解生物医用材料.

吴振,北京科技大学青年教师,主持国家自然科学基金青年科学基金项目,北京市自然科学基金面上项目等. 研究方向:光响应智能材料、生物医用材料、发光材料等.

崔宁,中国纺织科学研究院有限公司正高级工程师,中国纺织工程学会化纤专业委员会委员. 作为主要工艺技术负责人获国家科技进步二等奖2项,中国化学纤维工业协会·恒逸基金“杰出工程师”. 研究方向:高性能纤维、纺织品开发等.

王国杰,北京科技大学教授,博士生导师,北京市优秀人才,教育部新世纪优秀人才,中国生物材料学会高级会员,中国化学会高级会员. 发表SCI论文百余篇,论文被引用6000次以上,获中国发明专利35项. 担任国家科学技术奖励评审专家,中国生物材料学会生物复合材料分会委员. 研究方向:功能高分子材料、生物医用材料、光电材料、智能材料等.

收稿日期: 2024-12-17

  网络出版日期: 2025-02-19

基金资助

生物基纤维材料全国重点实验室开放研究基金(SKL202311); 北京市自然科学基金(2242044); 十四五国家重点研发计划(2022YFB3804201); 国家自然科学基金(22005021); 国家自然科学基金(51373025); 高校新世纪优秀人才计划项目(NCET-11-0582)

Research Progress in the Preparation and Application of Chitosan-Based Antimicrobial Fiber Materials

  • Qiming Zou ,
  • Zhen Wu ,
  • Ning Cui ,
  • Zetian Zhang ,
  • Guojie Wang
Expand
  • a School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
    b China Textile Research Institute Co., Ltd, Beijing 100025, China
    c State Key Laboratory of Bio-based Fiber Materials, Beijing 100025, China

Received date: 2024-12-17

  Online published: 2025-02-19

Supported by

Open Research Fund of the State Key Laboratory of Bio-based Fiber Materials(SKL202311); Beijing Municipal Natural Science Foundation(2242044); 14th Five-Year National Key R&D Plan(2022YFB3804201); National Natural Science Foundation of China(22005021); National Natural Science Foundation of China(51373025); Program for New Century Excellent Talents in Universities(NCET-11-0582)

摘要

有害细菌的存在始终威胁着人类健康, 伴随着耐药性的产生, 开发新的抗菌材料迫在眉睫. 壳聚糖作为一种兼具抗菌性、生物相容性和生物降解性的天然高分子材料, 近年来备受科学家的关注. 然而, 未经改性的壳聚糖结晶度高、溶解度低, 导致加工性能较差, 限制了其应用范围. 本文综述了壳聚糖物理掺杂和化学改性的策略, 介绍了壳聚糖制备抗菌纤维的方法, 如静电纺丝、湿法纺丝、离心纺丝、溶液吹纺等, 并讨论了抗菌纤维材料在生物医用、食品包装等领域的潜在应用, 为抗菌纤维材料的发展与创新提供了有益的参考和借鉴.

关键词: 壳聚糖; 改性; 纺丝; 纤维; 抗菌

本文引用格式

邹祺名 , 吴振 , 崔宁 , 张泽天 , 王国杰 . 壳聚糖基抗菌纤维的制备及应用研究[J]. 化学学报, 2025 , 83(3) : 287 -298 . DOI: 10.6023/A24120373

Abstract

Bacteria are widespread in nature and play an important role in human health. However, bacterial infections have long posed a serious threat to human life. The discovery of antibiotics has improved infection control, but their misuse has led to the problem of bacterial resistance. Therefore, the development of new antibacterial materials has become a hot research topic. Among them, the natural polymer chitosan has attracted much attention due to its excellent biocompatibility, biodegradability and antibacterial properties. This review introduces the structure and properties of chitosan, including its antimicrobial activity, solubility, etc., and points out that chitosan with different degrees of deacetylation and molecular weights exhibits different antimicrobial effects and solubility. The modification strategies of chitosan, including physical doping and chemical modification, such as Schiff base reaction, esterification reaction, quaternization reaction and graft copolymerization, are elaborated in detail, which are aimed at improving the solubility of chitosan and expanding its application range. The optimized chitosan can be prepared into nanofibers by various advanced fabrication processes such as electrostatic spinning, centrifugal spinning, solution blow spinning and wet spinning. These nanofibers have the advantages of high specific surface area, adjustable porosity, excellent mechanical strength and antimicrobial properties. This review discusses the potential applications of chitosan-based antimicrobial fiber materials in the fields of wound dressings, tissue engineering, drug delivery carriers, food packaging, living textiles, and environmental treatment. This review also points out that chitosan-based antimicrobial fiber materials need to solve some problems if they are going to be marketed, such as in-depth exploration of the relationship between chitosan molecular structure and performance, development of a more efficient preparation process, and focusing on resource conservation and environmental protection in the production and application process. This review provides useful references and lessons for the development and innovation of chitosan-based antimicrobial fiber materials.

参考文献

[1]
Hu, Y. R. Ph.D. Dissertation, South China University of Technology, Guangzhou, 2013 (in Chinese).
[1]
(胡云睿, 博士论文, 华南理工大学, 广州, 2013.)
[2]
Sender, R.; Fuchs, S.; Milo, R. PLoS Biol. 2016, 14, e1002533.
[3]
Fauci, A. S.; Morens, D. M. N. Engl. J. Med. 2012, 366, 90.
[4]
Sands, P.; El Turabi, A.; Saynisch, P. A.; Dzau, V. J. Lancet 2016, 388, 2443.
[5]
Devakumar, D.; Shannon, G.; Bhopal, S. S.; Abubakar, I. Lancet 2020, 395, 1194.
[6]
Duan, S.; Wu, R.-N.; Xiong, Y.-H.; Ren, H.-M.; Lei, C.-Y.; Zhao, Y.-Q.; Zhang, X.-Y.; Xu, F.-J. Prog. Mater. Sci. 2022, 125, 100887.
[7]
Paules, C. I.; Fauci, A. S. JAMA 2017, 317, 691.
[8]
Liu, Z.-X.; Jiang, X.-Y; Li, Z.-Y.; Zheng, Y.-F.; Nie, J.-J.; Cui, Z.-D.; Liang, Y.-Q.; Zhu, S.-L.; Chen, D.-F.; Wu, S.-L. Chem. Eng. J. 2022, 437, 135401.
[9]
Tan, S.-Y.; Tatsumura, Y. Singapore Med. J. 2015, 56, 366.
[10]
Taylor, L. BMJ 2021, 375, n2845.
[11]
Lin, L. Ph.D. Dissertation, Donghua University, Shanghai, 2010 (in Chinese).
[11]
(林玲, 博士论文, 东华大学, 上海, 2010.)
[12]
Luo, J.-L. Guangzhou Huagong 2017, 45, 1 (in Chinese).
[12]
(罗佳露, 广州化工, 2017, 45, 1.)
[13]
Guo, Y.-J.; Zhang, M.-Z.; Duan, C.-S.; Dong, X.-Y. Yunnan Huagong 2020, 47, 18 (in Chinese).
[13]
(郭一婧, 张铭哲, 段昶晟, 董馨愿, 云南化工, 2020, 47, 18.)
[14]
Li, S.-Q.; Dong, S.-J.; Xu, W.-G.; Tu, S.-C.; Yan, L.-S.; Zhao, C.-W.; Ding, J.-X.; Chen, X.-S. Adv. Sci. 2018, 5, 1700527.
[15]
Xia, J.-L.; Wang, C.; Liu, X.-X. Journal of Central South University (Sci. & Technol.) 2004, 35, 31 (in Chinese).
[15]
(夏金兰, 王春, 刘新星, 中南大学学报(自然科学版), 2004, 35, 31.)
[16]
Sun, J.; Qiao, X.-L.; Chen, J.-G. Mater. Rep. 2007, 21, 344 (in Chinese).
[16]
(孙剑, 乔学亮, 陈建国, 材料导报, 2007, 21, 344.)
[17]
Sun, J. M.S. Thesis, Huazhong University of Science and Technology, Wuhan, 2007 (in Chinese).
[17]
(孙剑, 硕士论文, 华中科技大学, 武汉, 2007.)
[18]
Wang, J.; Shui, Z.-H.; Ji, Z.-J.; Cao, Y.-X.; Hou, G.-Y.; Wang, J.-M.; Wang, X.-Y. Mater. Rep. 2013, 27, 59 (in Chinese).
[18]
(王静, 水中和, 冀志江, 曹延鑫, 侯国艳, 王继梅, 王晓燕, 材料导报, 2013, 27, 59.)
[19]
Liu, S.-R.; Tan, Y.-J.; Zhang, M.-Y.; Huo, Q. J. Text. Sci. Eng. 2022, 39, 90 (in Chinese).
[19]
(刘姝瑞, 谭艳君, 张明宇, 霍倩, 纺织科学与工程学报, 2022, 39, 90.)
[20]
Chen, M.-M.; Guo, R.-H. J. Text. Sci. Eng. 2019, 36, 153 (in Chinese).
[20]
(陈美梅, 郭荣辉, 纺织科学与工程学报, 2019, 36, 153.)
[21]
Yang, Y.-Y.; Wang, X.; Wu, D.-C. Acta Chim. Sinica 2021, 79, 1 (in Chinese).
[21]
(杨艳宇, 王星, 吴德成, 化学学报, 2021, 79, 1.)
[22]
Zhen, H.-P.; Nie, J.; Sun, J.-F.; Guo, S.; Yang, D.-Z. Acta Polym. Sinica 2007, 1, 230 (in Chinese).
[22]
(甄洪鹏, 聂俊, 孙俊峰, 郭爽, 杨冬芝, 高分子学报, 2007, 1, 230.)
[23]
Guo, J.-R.; Zhang, S.-Y.; He, J.-H.; Ren, S.-X. Acta Chim. Sinica 2024, 82, 242 (in Chinese).
[23]
(郭建荣, 张书玉, 贺军辉, 任世学, 化学学报, 2024, 82, 242.)
[24]
Ahmed, M. E.; Mohamed, H. M.; Mohamed, M. I.; Kandile, N. G. Int. J. Biol. Macromol. 2020, 162, 1388.
[25]
Lou, L.-H.; Osemwegie, O.; Ramkumar, S. S. Ind. Eng. Chem. Res. 2020, 59, 5439.
[26]
Priyanto, A.; Hapidin, D. A.; Suciati, T.; Khairurrijal, K. Food Eng. Rev. 2022, 14, 435.
[27]
Edgar, K. J.; Zhang, H.-H. Carbohydr. Polym. 2020, 250, 116932.
[28]
Vo, T. S.; Chit, P. P.; Nguyen, V. H.; Hoang, T.; Lwin, K. M.; Vo, T, T. B. C.; Jeon, B.; Han, S.; Lee, J.; Park, Y.; Kim, K. Int. J. Biol. Macromol. 2024, 281, 136243.
[29]
Crini, G. Environ. Chem. Lett. 2019, 17, 1623.
[30]
Rinaudo, M. Prog. Polym. Sci. 2006, 31, 603.
[31]
Hejazi, R.; Amiji, M. J. Controlled Release. 2003, 89, 151.
[32]
Anaya, P.; Cardenas, G.; Lavayen, V.; Garcia, A.; O'Dwyer, C. J. Appl. Polym. Sci. 2013, 128, 3939.
[33]
Hamed, I.; Ozogul, F.; Regenstein, J. M. Trends Food Sci. Technol. 2016, 48, 40.
[34]
de Alvarenga, E. S.; de Oliveira, C. P.; Bellato, C. R. Carbohydr. Polym. 2010, 80, 1155.
[35]
Sahariah, P.; Masson, M. Biomacromolecules 2017, 18, 3846.
[36]
Behrooznia, Z.; Nourmohammadi, J.; Mohammadi, Z.; Shabani, F.; Mashhadi, R. Carbohydr. Res. 2025, 551, 109416.
[37]
Tao, F.-H.; Cheng, Y.-X.; Shi, X.-W.; Zheng, H.-F.; Du, Y.-M.; Xiang, W.; Deng, H. B. Carbohydr. Polym. 2020, 230, 115658.
[38]
Nie, H.-R.; Shen, X.-X.; Zhou, Z.-H.; Jiang, Q.-S.; Chen, Y.-W.; Xie, A.; Wang, Y.; Han, C. C. Carbohydr. Polym. 2011, 85, 681.
[39]
Jia, J.-J.; Lin, Z.-H.; Zhu, J.-L.; Liu, Y.-J.; Hu, Y.-L.; Fang, K.-J. Int. J. Biol. Macromol. 2024, 261, 129668.
[40]
Pechsrichuang, P.; Lorentzen, S. B.; Aam, B. B.; Tuveng, T. R.; Hamre, A. G.; Eijsink, V. G. H.; Yamabhai, M. Carbohydr. Polym. 2018, 186, 420.
[41]
Kalantari, K.; Afifi, A. M.; Jahangirian, H.; Webster, T. J. Carbohydr. Polym. 2019, 207, 588.
[42]
Gamiz-Gonzaleza, M. A.; Correia, D. M.; Lanceros-Mendez, S.; Sencadas, V.; Ribelles, J. L. G.; Vidaurre, A. Carbohydr. Polym. 2017, 167, 52.
[43]
Bagheri-Khoulenjani, S.; Taghizadeh, S. M.; Mirzadeh, H. Carbohydr. Polym. 2009, 78, 773.
[44]
Yang, Y.-M.; Hu, W.; Wang, X.-D.; Gu, X.-S. J. Mater. Sci.: Mater. Med. 2007, 18, 2117.
[45]
Li, J.; Du, Y.-M; Liang, H.-B. Polym. Degrad. Stab. 2007, 92, 515.
[46]
Savitri, E.; Juliastuti, S. R.; Handaratri, A.; Sumarno; Roesyadi, A. Polym. Degrad. Stab. 2014, 110, 344.
[47]
Zhu, L.-X.; Lin, H. Chinese Feed 2000, 23, 6.
[48]
Yan, J.-C.; Xu, J.-L; Ai, S.; Zhang, K.-M; Yang, F.; Huang, Y.-C. Arabian J. Chem. 2020, 13, 5776.
[49]
Allan, C. R.; Hadwiger, L. A. Exp. Mycol. 1979, 3, 285.
[50]
Andres, Y.; Giraud, L.; Gerente, C.; Le Cloirec, P. Environ. Technol. 2007, 28, 1357.
[51]
Wu, K.-J.; Yan, Z.-Y.; Wu, Z.-Y.; Li, J.-Y.; Zhong, W.-D.; Ding, L.-Y.; Zhong, T.; Jiang, T. J. Funct. Biomater. 2024, 15, 318.
[52]
Ke, C.-L.; Deng, F.-S.; Chuang, C.-Y.; Lin, C.-H. Polymers 2021, 13, 904.
[53]
Hosseinnejad, M.; Jafari, S. M. Int. J. Biol. Macromol. 2016, 85, 467.
[54]
Verlee, A.; Mincke, S.; Stevens, C. V. Carbohydr. Polym. 2017, 164, 268.
[55]
Chiu, H.-T.; Chen, R.-L.; Wu, P.-Y.; Chiang, T.-Y.; Chen, S.-C. Polym. Plast. Technol. Eng. 2007, 46, 1121.
[56]
Byun, S. M.; No, H. K.; Hong, J.-H.; Lee, S. I.; Prinyawiwatkul, W. Int. J. Food Sci. Technol. 2013, 48, 136.
[57]
Tokura, S.; Ueno, K.; Miyazaki, S.; Nishi, N. Macromol. Symp. 1997, 120, 1.
[58]
Kulikov, S. N.; Tikhonov, V. E.; Bezrodnykh, E. A.; Lopatin, S. A.; Varlamov, V. P. Russ. J. Bioorg. Chem. 2015, 41, 57.
[59]
Mottaghitalab, F.; Yazdi, M. K.; Saeb, M. R.; B?czek, T.; Farokhi, M. Chem. Eng. J. 2024, 492, 152288.
[60]
Nguyen, K. T.; Mai, D. X. N.; Doan, U. T. T.; Nguyen, T. T.; Dang, Y. T.; Ta, H. K. T.; Phan, T. B.; Pham, N. K. J. Mater. Res. 2021, 36, 508.
[61]
Egorov, A. R.; Kirichuk, A. A.; Rubanik, V. V.; Rubanik, V. V. Jr.; Tskhovrebov, A. G.; Kritchenkov, A. S. Materials 2023, 16, 6076.
[62]
Devlieghere, F.; Vermeulen, A.; Debevere, J. Food Microbiol. 2004, 21, 703.
[63]
Meng, X.-T.; Xing, R.-G.; Liu, S.; Yu, H.-H.; Li, K.-C.; Qin, Y.-K; Li, P.-C. Int. J. Biol. Macromol. 2012, 50, 918.
[64]
Ardila, N.; Daigle, F.; Heuzey, M.-C.; Ajji, A. Molecules 2017, 22, 100.
[65]
Tsai, G-J.; Su, W.-H. J. Food Prot. 1999, 62, 239.
[66]
Wu, C. H. Ph.D. Dissertation, Zhejiang University, Hangzhou, 2017 (in Chinese).
[66]
(吴春华, 博士论文, 浙江大学, 杭州, 2017.)
[67]
Hamdine, M.; Heuzey, M.-C.; Bégin, A. Int. J. Biol. Macromol. 2005, 37, 134.
[68]
Xiong, W. S. Ph.D. Dissertation, Zhejiang University of Technology, Hangzhou, 2011 (in Chinese).
[68]
(熊文说, 博士论文, 浙江工业大学, 杭州, 2011.)
[69]
Rao, M. S.; Nyein, K. A.; Trung, T. S.; Stevens, W. F. J. Appl. Polym. Sci. 2007, 103, 3694.
[70]
Kubota, N.; Eguchi, Y. Polym. J. 1997, 29, 123.
[71]
Shariatinia, Z. Adv. Colloid Interface Sci. 2019, 263, 131.
[72]
Pal, K.; Bharti, D.; Sarkar, P.; Anis, A.; Kim, D.; Chalas, R.; Maksymiuk, P.; Stachurski, P.; Jarz?bski, M. Int. J. Mol. Sci. 2021, 22, 10968.
[73]
El-Tahlawy, K.; Hudson, S. M. J. Appl. Polym. Sci. 2006, 100, 1162.
[74]
Saghebasl, S.; Amini, H.; Nobakht, A.; Haiaty, S.; Bagheri, H. S.; Hasanpour, P.; Milani, M.; Saghati, S.; Naturi, O.; Farhadi, M.; Rahbarghazi, R. J. Nanobiotechnol. 2023, 21, 313.
[75]
Dorraji, M. S. S.; Amani-Ghadim, A. R.; Hanifehpour, Y.; Joo, S. W.; Figoli, A.; Carraro, M.; Tasselli, F. Chem. Eng. Res. Des. 2017, 117, 309.
[76]
Purohit, S. D.; Priyadarshi, R.; Bhaskar, R.; Han, S. S. Food Hydrocolloids 2023, 143, 108910.
[77]
D?bravová, A.; Muchová, M.; ?koda, D.; Lovecká, L.; ?imoníková, L.; Ku?itka, I.; Vícha, J.; Münster, L. Carbohydr. Polym. 2024, 323, 121435.
[78]
Kong, Y.-H.; Zhang, W.-J.; He, T.; Yang, X.; Bi, W.-H.; Li, J.-W.; Yang, W.-Z.; Chen, W.-C. Carbohydr. Polym. 2023, 304, 120485.
[79]
Yin, J.; Xu, L. Int. J. Biol. Macromol. 2020, 160, 352.
[80]
Ibrahim, M. A.; Alhalafi, M. H.; Emam, E.-A. M.; Ibrahim, H.; Mosaad, R. M. Polymers 2023, 15, 2820.
[81]
Wang, J.-L.; Zhuang, S.-T. J. Cleaner Prod. 2022, 355, 131825.
[82]
Pawariya, V.; De, S.; Dutta, J. Carbohydr. Polym. 2024, 323, 121395.
[83]
Qin, Z.-Y; Jia, X.-W.; Liu, Q.; Kong, B.-H.; Wang, H. Carbohydr. Polym. 2020, 247, 116734.
[84]
Ignatova, M.; Anastasova, I.; Manolova, N.; Rashkov, I.; Markova, N.; Kukeva, R.; Stoyanova, R.; Georgieva, A.; Toshkova, R. Polymers 2022, 14, 5002.
[85]
Jie, X.-Y.; Shiu, B.-C.; Zhang, Y.-C.; Wu, H.-Z; Ye, Y.-S.; Fang, R. Carbohydr. Polym. 2023, 312, 120792.
[86]
Lu, Q. Ph.D. Dissertation, Qilu University of Technology, Jinan, 2016 (in Chinese).
[86]
(卢琦, 博士论文, 齐鲁工业大学, 济南, 2016.)
[87]
Ghaee, A.; Nourmohammadi, J.; Danesh, P. Carbohydr. Polym. 2017, 157, 695.
[88]
Xue, C.; Wilson, L. D. Carbohydr. Polym. 2022, 275, 118751.
[89]
Zhao, J.; Li, J.-Q.; Jiang, Z.-L.; Tong, R.-S.; Duan, X.-M.; Bai, L.; Shi, J.-Y. Int. J. Biol. Macromol. 2020, 154, 339.
[90]
Kang, Y.; Liu, Z.; Long, Y.-Y; Wang, B.-L.; Yang, X.; Sha, D.; Shi, K.; Ji, X.-L.; Li, B.; Liu, Y.-G. J. Appl. Polym. Sci. 2021, 138, 51811.
[91]
Anisiei, A.; Andreica, B.-I.; Mititelu-Tartau, L.; Coman, C. G.; Bilyy, R.; Bila, G.; Rosca, I.; Sandu, A.-I.; Amler, E.; Marin, L. Int. J. Biol. Macromol. 2023, 249, 126056.
[92]
Qiu, Y.-L.; Li, Y.-X.; Zhang, G.-L.; Hao, H.-S.; Hou, H.-M.; Bi, J.-R Carbohydr. Polym. 2024, 323, 121384.
[93]
Yin, M.-L.; Wang, Y.-F.; Zhang, Y.; Ren, X.-H.; Qiu, Y.-Y.; Huang, T.-S. Carbohydr. Polym. 2020, 232, 115823.
[94]
Liang, Z. Y. M.S. Thesis, Guangxi University, Nanning, 2022 (in Chinese).
[94]
(梁兆毅, 硕士论文, 广西大学, 南宁, 2022.)
[95]
Kudyshkin, V. O.; Abrarova, Z. M.; Bozorov, N. I.; Zhumartova, U. U.; Usmanova, M. M.; Ashurov, N. S.; Rashidova, S. S. Polym. Sci. Ser. B 2024, 66, 51.
[96]
Chen, X.-J.; Lei, Z.-Y.; Liu, P.; Lei, M.-J.; Xu, H.; Yu, L.-J.; Ao, M.-Z. Carbohydr. Polym. 2023, 316, 120988.
[97]
Ren, Y.-M.; Huang, L.-M.; Wang, Y.-L; Mei, L.; Fan, R.-R.; He, M.; Wang, C.; Tong, A.-P.; Chen, H.-F.; Guo, G. Carbohydr. Polym. 2020, 247, 116754.
[98]
Tu, H.; Wu, G.-M.; Yi, Y.; Huang, M.-T.; Liu, R.; Shi, X.-W.; Deng, H.-B. Carbohydr. Polym. 2019, 210, 9.
[99]
Wu, H.-P.; Gao, B.-T.; Wu, H.-H.; Song, J.-X.; Zhu, L.; Zhou, M.; Linhu, X.-T.; Huang, S.; Zhou, Z.-B.; Wa, Q.-D. Int. J. Biol. Macromol. 2024, 269, 131878.
[100]
Yue, T.-T.; Li, X.; Wang, X.-X.; Yan, X.; Yu, M.; Ma, J.-W.; Zhou, Y.; Ramakrishna, S.; Long, Y.-Z. Nanoscale Res. Lett. 2018, 13, 239.
[101]
Xu, H.-Z.; Yagi, S.; Ashour, S.; Du, L.; Hoque, M. E.; Tan, L. Macromol. Mater. Eng. 2023, 308, 2200502.
[102]
Chen, C.; Jia, X.-Y.; Li, X.-R.; Shi, M.-Y.; Hu, J.-Y.; Song, M.-Y.; Wu, S.-W.; Dai, H.-L.; Wang, X.-G.; Geng, H.-Y. Chem. Eng. J. 2023, 475, 146307.
[103]
Shen, C.-Y; Wu, M.-L.; Sun, C.; Li, J.-K.; Wu, D.; Sun, C.-D.; He, Y.; Chen, K.-S. Carbohydr. Polym. 2022, 286, 119267.
[104]
Rahmati, M.; Mills, D. K.; Urbanska, A. M.; Saeb, M. R.; Venugopal, J. R.; Ramakrishna, S.; Mozafari, M. Prog. Mater. Sci. 2021, 117, 100721.
[105]
Shen, W.-Y.; Wang, Y.-X.; Li, Y.-L.; Cui, Z.-Y.; Yang, Y.-T.; Shi, H.-L.; Xu, C.-F.; Yin, T.-J. Carbohydr. Polym. 2024, 324, 121468.
[106]
Yin, J.; Xu, L.; Ahmed, A. Adv. Fiber Mater. 2022, 4, 832.
[107]
Gu, B. K.; Park, S. J.; Kim, M. S.; Kang, C. M.; Kim, J.-I.; Kim, C.-H. Carbohydr. Polym. 2013, 97, 65.
[108]
Zhang, X.-W.; Lu, Y. Polym. Rev., 2014, 54, 677.
[109]
Boschetto, F.; Doan, H. N.; Vo, P. P.; Zanocco, M.; Zhu, W.; Sakai, W.; Kinashi, K.; Marin, E.; Pezzotti, G. Mater. Today Chem. 2021, 20, 100461.
[110]
Zhang, B.-W.; Jiang, Z.; Li, X.; Wu, Z.-Y.; Liu, Y.-M.; Hu, J.; Zhang, C.-H.; Chen, J.-Y.; Zhou, Y.-S.; Rao, J.; Liu, X. Carbohydr. Polym. 2023, 317, 121062.
[111]
Gao, Y.; Zhang, J.; Su, Y.; Wang, H.; Wang, X.-X.; Huang, L.-P.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. Mater. Horiz. 2021, 8, 426.
[112]
Daristotle, J. L.; Behrens, A. M.; Sandler, A. D.; Kofinas, P. ACS Appl. Mater. Interfaces 2016, 8, 34951.
[113]
Shinkawa, M.; Motai, K.; Eguchi, K.; Takarada, W.; Ashizawa, M.; Masunaga, H.; Ohta, N.; Hayamizu, Y.; Matsumoto, H. Membranes 2021, 11, 389.
[114]
Yang, B.-J.; Tang, B.-L.; Wang, Z.-Y.; Feng, F.; Wang, G.-X.; Zhao, Z.-H.; Xue, Z.; Li, J.-W.; Chen, W.-C. Carbohydr. Polym. 2024, 326, 121618.
[115]
Shen, C.-Y.; Yang, X.-Z.; Wang, D.; Li, J.-K.; Zhu, C.-Q.; Wu, D.; Chen, K.-S. Carbohydr. Polym. 2024, 326, 121636.
[116]
Shirvan, A. R.; Nouri, A.; Sutti, A. Eur. Polym. J. 2022, 181, 111681.
[117]
Shen, X.-Y.; Akbarzadeh, A.; Hu, Q.; Shi, C.; Jin, Y.; Ge, M.-Q. J. Lumin. 2022, 251, 119179.
[118]
Sarabia-Riquelme, R.; Noble, L. E.; Espejo, P. A.; Ke, Z.-F.; Graham, K. R.; Mei, J.-G.; Paterson, A. F.; Weisenberger, M. C. Adv. Funct. Mater. 2024, 34, 2311379.
[119]
Zhang, S. H. Ph.D. Dissertation, South China University of Technology, Guangzhou, 2022 (in Chinese).
[119]
(张思晗, 博士论文, 华南理工大学, 广州, 2022.)
[120]
Chen, Y.-J.; Zhang, Q.; Zhong, Y.; Wei, P.-D.; Yu, X.-J.; Huang, J.-C.; Cai, J. Adv. Funct. Mater. 2021, 31, 2104368.
[121]
Shi, X.-W.; Li, X.-X.; Du, Y.-M. Acta Polym. Sinica 2011, 1, 1 (in Chinese).
[121]
(施晓文, 李晓霞, 杜予民, 高分子学报, 2011, 1, 1.)
[122]
Qin, Y.-K.; Li, P.-C.; Guo, Z.-Y. Carbohydr. Polym. 2020, 236, 116002.
[123]
Mirhaj, M.; Tavakoli, M.; Varshosaz, J.; Labbaf, S.; Salehi, S.; Talebi, A.; Kazemi, N.; Haghighi, V.; Alizadeh, M. Carbohydr. Polym. 2022, 292, 119648.
[124]
He, J.-H.; Liang, Y.-P.; Shi, M.-T.; Guo, B.-L. Chem. Eng. J. 2020, 385, 123464.
[125]
Harugade, A.; Sherje, A. P.; Pethe, A. React. Funct. Polym. 2023, 191, 105634.
[126]
Rastegar, A.; Mahmoodi, M.; Mirjalili, M.; Nasirizadeh, N. Carbohydr. Polym. 2021, 269, 118351.
[127]
Liu, Y.-W.; Wang, S.-Y.; Zhang, R. Int. J. Biol. Macromol. 2017, 103, 1130.
[128]
Ali, A.; Ahmed, S. Int. J. Biol. Macromol. 2018, 109, 273.
[129]
Grkovic, M.; Stojanovic, D. B.; Pavlovic, V. B.; Rajilic-Stojanovic, M.; Bjelovic, M.; Uskokovic, P. S. Composites, Part B 2017, 121, 58.
[130]
El-Okaily, M. S.; El-Rafei, A. M.; Basha, M.; Ghani, N. T. A.; El-Sayed, M. M. H.; Bhaumik, A.; Mostafa, A. A. Int. J. Biol. Macromol. 2021, 182, 1582.
[131]
Farias, B. S.; Cadaval Jr, T. R. S.; Pinto, L. A. A Int. J. Biol. Macromol. 2019, 123, 210.
[132]
Yang, X.-X.; Sheng, L.-N.; Ye, Y.-L.; Sun, J.-D.; Ji, J.; Geng, S.-X.; Ning, D.-L.; Zhang, Y.-Z.; Sun, X.-L. Int. J. Biol. Macromol. 2024, 272, 132834.
[133]
Zou, Y.-C.; Zhang, C.; Wang, P.; Zhang, Y.-P.; Zhang, H. Carbohydr. Polym. 2020, 247, 116711.
[134]
Li, J.-H.; Tian, X.; Hua, T.; Fu, J.-M.; Koo, M.; Chan, W.; Poon, T. ACS Appl. Bio Mater. 2021, 4, 4014.
[135]
Zhang, W.; Dai, X.-L.; Zhou, J.-J.; Zhu, G. Fibers Polym. 2017, 18, 290.
[136]
Song, B.-Q.; Zhang, T.-Y.; Li, X.-F.; Yang, K.-L.; Shan, J.-Y.; Dang, Y.-Z.; Ma, J.-H. Eur. Polym. J. 2023, 197, 112357.
[137]
Chen, S.; Li, C.-P.; Hou, T.-T.; Cai, Y.; Liang, L.-M.; Chen, L.-M.; Li, M.-S. React. Funct. Polym. 2019, 145, 104379.
[138]
Anisiei, A.; Oancea, F.; Marin, L. Rev. Chem. Eng. 2023, 39, 31.
[139]
Jahan, I.; Zhang, L.-F. J. Polym. Environ. 2022, 30, 1709.
[140]
Liu, K.; Cheng, P.; Wang, Y.; Zhong, W.-B.; Lu, Z.-T.; Li, M.-F.; Liu, Q.-Z.; Wang, W.-W.; Zhu, Q.; Wang, D. Environ. Sci.: Nano 2017, 4, 385.
文章导航

/