壳聚糖基抗菌纤维的制备及应用研究
收稿日期: 2024-12-17
网络出版日期: 2025-02-19
基金资助
生物基纤维材料全国重点实验室开放研究基金(SKL202311); 北京市自然科学基金(2242044); 十四五国家重点研发计划(2022YFB3804201); 国家自然科学基金(22005021); 国家自然科学基金(51373025); 高校新世纪优秀人才计划项目(NCET-11-0582)
Research Progress in the Preparation and Application of Chitosan-Based Antimicrobial Fiber Materials
Received date: 2024-12-17
Online published: 2025-02-19
Supported by
Open Research Fund of the State Key Laboratory of Bio-based Fiber Materials(SKL202311); Beijing Municipal Natural Science Foundation(2242044); 14th Five-Year National Key R&D Plan(2022YFB3804201); National Natural Science Foundation of China(22005021); National Natural Science Foundation of China(51373025); Program for New Century Excellent Talents in Universities(NCET-11-0582)
邹祺名 , 吴振 , 崔宁 , 张泽天 , 王国杰 . 壳聚糖基抗菌纤维的制备及应用研究[J]. 化学学报, 2025 , 83(3) : 287 -298 . DOI: 10.6023/A24120373
Bacteria are widespread in nature and play an important role in human health. However, bacterial infections have long posed a serious threat to human life. The discovery of antibiotics has improved infection control, but their misuse has led to the problem of bacterial resistance. Therefore, the development of new antibacterial materials has become a hot research topic. Among them, the natural polymer chitosan has attracted much attention due to its excellent biocompatibility, biodegradability and antibacterial properties. This review introduces the structure and properties of chitosan, including its antimicrobial activity, solubility, etc., and points out that chitosan with different degrees of deacetylation and molecular weights exhibits different antimicrobial effects and solubility. The modification strategies of chitosan, including physical doping and chemical modification, such as Schiff base reaction, esterification reaction, quaternization reaction and graft copolymerization, are elaborated in detail, which are aimed at improving the solubility of chitosan and expanding its application range. The optimized chitosan can be prepared into nanofibers by various advanced fabrication processes such as electrostatic spinning, centrifugal spinning, solution blow spinning and wet spinning. These nanofibers have the advantages of high specific surface area, adjustable porosity, excellent mechanical strength and antimicrobial properties. This review discusses the potential applications of chitosan-based antimicrobial fiber materials in the fields of wound dressings, tissue engineering, drug delivery carriers, food packaging, living textiles, and environmental treatment. This review also points out that chitosan-based antimicrobial fiber materials need to solve some problems if they are going to be marketed, such as in-depth exploration of the relationship between chitosan molecular structure and performance, development of a more efficient preparation process, and focusing on resource conservation and environmental protection in the production and application process. This review provides useful references and lessons for the development and innovation of chitosan-based antimicrobial fiber materials.
Key words: chitosan; modification; spinning; fiber; antimicrobial
[1] | Hu, Y. R. Ph.D. Dissertation, South China University of Technology, Guangzhou, 2013 (in Chinese). |
[1] | (胡云睿, 博士论文, 华南理工大学, 广州, 2013.) |
[2] | Sender, R.; Fuchs, S.; Milo, R. PLoS Biol. 2016, 14, e1002533. |
[3] | Fauci, A. S.; Morens, D. M. N. Engl. J. Med. 2012, 366, 90. |
[4] | Sands, P.; El Turabi, A.; Saynisch, P. A.; Dzau, V. J. Lancet 2016, 388, 2443. |
[5] | Devakumar, D.; Shannon, G.; Bhopal, S. S.; Abubakar, I. Lancet 2020, 395, 1194. |
[6] | Duan, S.; Wu, R.-N.; Xiong, Y.-H.; Ren, H.-M.; Lei, C.-Y.; Zhao, Y.-Q.; Zhang, X.-Y.; Xu, F.-J. Prog. Mater. Sci. 2022, 125, 100887. |
[7] | Paules, C. I.; Fauci, A. S. JAMA 2017, 317, 691. |
[8] | Liu, Z.-X.; Jiang, X.-Y; Li, Z.-Y.; Zheng, Y.-F.; Nie, J.-J.; Cui, Z.-D.; Liang, Y.-Q.; Zhu, S.-L.; Chen, D.-F.; Wu, S.-L. Chem. Eng. J. 2022, 437, 135401. |
[9] | Tan, S.-Y.; Tatsumura, Y. Singapore Med. J. 2015, 56, 366. |
[10] | Taylor, L. BMJ 2021, 375, n2845. |
[11] | Lin, L. Ph.D. Dissertation, Donghua University, Shanghai, 2010 (in Chinese). |
[11] | (林玲, 博士论文, 东华大学, 上海, 2010.) |
[12] | Luo, J.-L. Guangzhou Huagong 2017, 45, 1 (in Chinese). |
[12] | (罗佳露, 广州化工, 2017, 45, 1.) |
[13] | Guo, Y.-J.; Zhang, M.-Z.; Duan, C.-S.; Dong, X.-Y. Yunnan Huagong 2020, 47, 18 (in Chinese). |
[13] | (郭一婧, 张铭哲, 段昶晟, 董馨愿, 云南化工, 2020, 47, 18.) |
[14] | Li, S.-Q.; Dong, S.-J.; Xu, W.-G.; Tu, S.-C.; Yan, L.-S.; Zhao, C.-W.; Ding, J.-X.; Chen, X.-S. Adv. Sci. 2018, 5, 1700527. |
[15] | Xia, J.-L.; Wang, C.; Liu, X.-X. Journal of Central South University (Sci. & Technol.) 2004, 35, 31 (in Chinese). |
[15] | (夏金兰, 王春, 刘新星, 中南大学学报(自然科学版), 2004, 35, 31.) |
[16] | Sun, J.; Qiao, X.-L.; Chen, J.-G. Mater. Rep. 2007, 21, 344 (in Chinese). |
[16] | (孙剑, 乔学亮, 陈建国, 材料导报, 2007, 21, 344.) |
[17] | Sun, J. M.S. Thesis, Huazhong University of Science and Technology, Wuhan, 2007 (in Chinese). |
[17] | (孙剑, 硕士论文, 华中科技大学, 武汉, 2007.) |
[18] | Wang, J.; Shui, Z.-H.; Ji, Z.-J.; Cao, Y.-X.; Hou, G.-Y.; Wang, J.-M.; Wang, X.-Y. Mater. Rep. 2013, 27, 59 (in Chinese). |
[18] | (王静, 水中和, 冀志江, 曹延鑫, 侯国艳, 王继梅, 王晓燕, 材料导报, 2013, 27, 59.) |
[19] | Liu, S.-R.; Tan, Y.-J.; Zhang, M.-Y.; Huo, Q. J. Text. Sci. Eng. 2022, 39, 90 (in Chinese). |
[19] | (刘姝瑞, 谭艳君, 张明宇, 霍倩, 纺织科学与工程学报, 2022, 39, 90.) |
[20] | Chen, M.-M.; Guo, R.-H. J. Text. Sci. Eng. 2019, 36, 153 (in Chinese). |
[20] | (陈美梅, 郭荣辉, 纺织科学与工程学报, 2019, 36, 153.) |
[21] | Yang, Y.-Y.; Wang, X.; Wu, D.-C. Acta Chim. Sinica 2021, 79, 1 (in Chinese). |
[21] | (杨艳宇, 王星, 吴德成, 化学学报, 2021, 79, 1.) |
[22] | Zhen, H.-P.; Nie, J.; Sun, J.-F.; Guo, S.; Yang, D.-Z. Acta Polym. Sinica 2007, 1, 230 (in Chinese). |
[22] | (甄洪鹏, 聂俊, 孙俊峰, 郭爽, 杨冬芝, 高分子学报, 2007, 1, 230.) |
[23] | Guo, J.-R.; Zhang, S.-Y.; He, J.-H.; Ren, S.-X. Acta Chim. Sinica 2024, 82, 242 (in Chinese). |
[23] | (郭建荣, 张书玉, 贺军辉, 任世学, 化学学报, 2024, 82, 242.) |
[24] | Ahmed, M. E.; Mohamed, H. M.; Mohamed, M. I.; Kandile, N. G. Int. J. Biol. Macromol. 2020, 162, 1388. |
[25] | Lou, L.-H.; Osemwegie, O.; Ramkumar, S. S. Ind. Eng. Chem. Res. 2020, 59, 5439. |
[26] | Priyanto, A.; Hapidin, D. A.; Suciati, T.; Khairurrijal, K. Food Eng. Rev. 2022, 14, 435. |
[27] | Edgar, K. J.; Zhang, H.-H. Carbohydr. Polym. 2020, 250, 116932. |
[28] | Vo, T. S.; Chit, P. P.; Nguyen, V. H.; Hoang, T.; Lwin, K. M.; Vo, T, T. B. C.; Jeon, B.; Han, S.; Lee, J.; Park, Y.; Kim, K. Int. J. Biol. Macromol. 2024, 281, 136243. |
[29] | Crini, G. Environ. Chem. Lett. 2019, 17, 1623. |
[30] | Rinaudo, M. Prog. Polym. Sci. 2006, 31, 603. |
[31] | Hejazi, R.; Amiji, M. J. Controlled Release. 2003, 89, 151. |
[32] | Anaya, P.; Cardenas, G.; Lavayen, V.; Garcia, A.; O'Dwyer, C. J. Appl. Polym. Sci. 2013, 128, 3939. |
[33] | Hamed, I.; Ozogul, F.; Regenstein, J. M. Trends Food Sci. Technol. 2016, 48, 40. |
[34] | de Alvarenga, E. S.; de Oliveira, C. P.; Bellato, C. R. Carbohydr. Polym. 2010, 80, 1155. |
[35] | Sahariah, P.; Masson, M. Biomacromolecules 2017, 18, 3846. |
[36] | Behrooznia, Z.; Nourmohammadi, J.; Mohammadi, Z.; Shabani, F.; Mashhadi, R. Carbohydr. Res. 2025, 551, 109416. |
[37] | Tao, F.-H.; Cheng, Y.-X.; Shi, X.-W.; Zheng, H.-F.; Du, Y.-M.; Xiang, W.; Deng, H. B. Carbohydr. Polym. 2020, 230, 115658. |
[38] | Nie, H.-R.; Shen, X.-X.; Zhou, Z.-H.; Jiang, Q.-S.; Chen, Y.-W.; Xie, A.; Wang, Y.; Han, C. C. Carbohydr. Polym. 2011, 85, 681. |
[39] | Jia, J.-J.; Lin, Z.-H.; Zhu, J.-L.; Liu, Y.-J.; Hu, Y.-L.; Fang, K.-J. Int. J. Biol. Macromol. 2024, 261, 129668. |
[40] | Pechsrichuang, P.; Lorentzen, S. B.; Aam, B. B.; Tuveng, T. R.; Hamre, A. G.; Eijsink, V. G. H.; Yamabhai, M. Carbohydr. Polym. 2018, 186, 420. |
[41] | Kalantari, K.; Afifi, A. M.; Jahangirian, H.; Webster, T. J. Carbohydr. Polym. 2019, 207, 588. |
[42] | Gamiz-Gonzaleza, M. A.; Correia, D. M.; Lanceros-Mendez, S.; Sencadas, V.; Ribelles, J. L. G.; Vidaurre, A. Carbohydr. Polym. 2017, 167, 52. |
[43] | Bagheri-Khoulenjani, S.; Taghizadeh, S. M.; Mirzadeh, H. Carbohydr. Polym. 2009, 78, 773. |
[44] | Yang, Y.-M.; Hu, W.; Wang, X.-D.; Gu, X.-S. J. Mater. Sci.: Mater. Med. 2007, 18, 2117. |
[45] | Li, J.; Du, Y.-M; Liang, H.-B. Polym. Degrad. Stab. 2007, 92, 515. |
[46] | Savitri, E.; Juliastuti, S. R.; Handaratri, A.; Sumarno; Roesyadi, A. Polym. Degrad. Stab. 2014, 110, 344. |
[47] | Zhu, L.-X.; Lin, H. Chinese Feed 2000, 23, 6. |
[48] | Yan, J.-C.; Xu, J.-L; Ai, S.; Zhang, K.-M; Yang, F.; Huang, Y.-C. Arabian J. Chem. 2020, 13, 5776. |
[49] | Allan, C. R.; Hadwiger, L. A. Exp. Mycol. 1979, 3, 285. |
[50] | Andres, Y.; Giraud, L.; Gerente, C.; Le Cloirec, P. Environ. Technol. 2007, 28, 1357. |
[51] | Wu, K.-J.; Yan, Z.-Y.; Wu, Z.-Y.; Li, J.-Y.; Zhong, W.-D.; Ding, L.-Y.; Zhong, T.; Jiang, T. J. Funct. Biomater. 2024, 15, 318. |
[52] | Ke, C.-L.; Deng, F.-S.; Chuang, C.-Y.; Lin, C.-H. Polymers 2021, 13, 904. |
[53] | Hosseinnejad, M.; Jafari, S. M. Int. J. Biol. Macromol. 2016, 85, 467. |
[54] | Verlee, A.; Mincke, S.; Stevens, C. V. Carbohydr. Polym. 2017, 164, 268. |
[55] | Chiu, H.-T.; Chen, R.-L.; Wu, P.-Y.; Chiang, T.-Y.; Chen, S.-C. Polym. Plast. Technol. Eng. 2007, 46, 1121. |
[56] | Byun, S. M.; No, H. K.; Hong, J.-H.; Lee, S. I.; Prinyawiwatkul, W. Int. J. Food Sci. Technol. 2013, 48, 136. |
[57] | Tokura, S.; Ueno, K.; Miyazaki, S.; Nishi, N. Macromol. Symp. 1997, 120, 1. |
[58] | Kulikov, S. N.; Tikhonov, V. E.; Bezrodnykh, E. A.; Lopatin, S. A.; Varlamov, V. P. Russ. J. Bioorg. Chem. 2015, 41, 57. |
[59] | Mottaghitalab, F.; Yazdi, M. K.; Saeb, M. R.; B?czek, T.; Farokhi, M. Chem. Eng. J. 2024, 492, 152288. |
[60] | Nguyen, K. T.; Mai, D. X. N.; Doan, U. T. T.; Nguyen, T. T.; Dang, Y. T.; Ta, H. K. T.; Phan, T. B.; Pham, N. K. J. Mater. Res. 2021, 36, 508. |
[61] | Egorov, A. R.; Kirichuk, A. A.; Rubanik, V. V.; Rubanik, V. V. Jr.; Tskhovrebov, A. G.; Kritchenkov, A. S. Materials 2023, 16, 6076. |
[62] | Devlieghere, F.; Vermeulen, A.; Debevere, J. Food Microbiol. 2004, 21, 703. |
[63] | Meng, X.-T.; Xing, R.-G.; Liu, S.; Yu, H.-H.; Li, K.-C.; Qin, Y.-K; Li, P.-C. Int. J. Biol. Macromol. 2012, 50, 918. |
[64] | Ardila, N.; Daigle, F.; Heuzey, M.-C.; Ajji, A. Molecules 2017, 22, 100. |
[65] | Tsai, G-J.; Su, W.-H. J. Food Prot. 1999, 62, 239. |
[66] | Wu, C. H. Ph.D. Dissertation, Zhejiang University, Hangzhou, 2017 (in Chinese). |
[66] | (吴春华, 博士论文, 浙江大学, 杭州, 2017.) |
[67] | Hamdine, M.; Heuzey, M.-C.; Bégin, A. Int. J. Biol. Macromol. 2005, 37, 134. |
[68] | Xiong, W. S. Ph.D. Dissertation, Zhejiang University of Technology, Hangzhou, 2011 (in Chinese). |
[68] | (熊文说, 博士论文, 浙江工业大学, 杭州, 2011.) |
[69] | Rao, M. S.; Nyein, K. A.; Trung, T. S.; Stevens, W. F. J. Appl. Polym. Sci. 2007, 103, 3694. |
[70] | Kubota, N.; Eguchi, Y. Polym. J. 1997, 29, 123. |
[71] | Shariatinia, Z. Adv. Colloid Interface Sci. 2019, 263, 131. |
[72] | Pal, K.; Bharti, D.; Sarkar, P.; Anis, A.; Kim, D.; Chalas, R.; Maksymiuk, P.; Stachurski, P.; Jarz?bski, M. Int. J. Mol. Sci. 2021, 22, 10968. |
[73] | El-Tahlawy, K.; Hudson, S. M. J. Appl. Polym. Sci. 2006, 100, 1162. |
[74] | Saghebasl, S.; Amini, H.; Nobakht, A.; Haiaty, S.; Bagheri, H. S.; Hasanpour, P.; Milani, M.; Saghati, S.; Naturi, O.; Farhadi, M.; Rahbarghazi, R. J. Nanobiotechnol. 2023, 21, 313. |
[75] | Dorraji, M. S. S.; Amani-Ghadim, A. R.; Hanifehpour, Y.; Joo, S. W.; Figoli, A.; Carraro, M.; Tasselli, F. Chem. Eng. Res. Des. 2017, 117, 309. |
[76] | Purohit, S. D.; Priyadarshi, R.; Bhaskar, R.; Han, S. S. Food Hydrocolloids 2023, 143, 108910. |
[77] | D?bravová, A.; Muchová, M.; ?koda, D.; Lovecká, L.; ?imoníková, L.; Ku?itka, I.; Vícha, J.; Münster, L. Carbohydr. Polym. 2024, 323, 121435. |
[78] | Kong, Y.-H.; Zhang, W.-J.; He, T.; Yang, X.; Bi, W.-H.; Li, J.-W.; Yang, W.-Z.; Chen, W.-C. Carbohydr. Polym. 2023, 304, 120485. |
[79] | Yin, J.; Xu, L. Int. J. Biol. Macromol. 2020, 160, 352. |
[80] | Ibrahim, M. A.; Alhalafi, M. H.; Emam, E.-A. M.; Ibrahim, H.; Mosaad, R. M. Polymers 2023, 15, 2820. |
[81] | Wang, J.-L.; Zhuang, S.-T. J. Cleaner Prod. 2022, 355, 131825. |
[82] | Pawariya, V.; De, S.; Dutta, J. Carbohydr. Polym. 2024, 323, 121395. |
[83] | Qin, Z.-Y; Jia, X.-W.; Liu, Q.; Kong, B.-H.; Wang, H. Carbohydr. Polym. 2020, 247, 116734. |
[84] | Ignatova, M.; Anastasova, I.; Manolova, N.; Rashkov, I.; Markova, N.; Kukeva, R.; Stoyanova, R.; Georgieva, A.; Toshkova, R. Polymers 2022, 14, 5002. |
[85] | Jie, X.-Y.; Shiu, B.-C.; Zhang, Y.-C.; Wu, H.-Z; Ye, Y.-S.; Fang, R. Carbohydr. Polym. 2023, 312, 120792. |
[86] | Lu, Q. Ph.D. Dissertation, Qilu University of Technology, Jinan, 2016 (in Chinese). |
[86] | (卢琦, 博士论文, 齐鲁工业大学, 济南, 2016.) |
[87] | Ghaee, A.; Nourmohammadi, J.; Danesh, P. Carbohydr. Polym. 2017, 157, 695. |
[88] | Xue, C.; Wilson, L. D. Carbohydr. Polym. 2022, 275, 118751. |
[89] | Zhao, J.; Li, J.-Q.; Jiang, Z.-L.; Tong, R.-S.; Duan, X.-M.; Bai, L.; Shi, J.-Y. Int. J. Biol. Macromol. 2020, 154, 339. |
[90] | Kang, Y.; Liu, Z.; Long, Y.-Y; Wang, B.-L.; Yang, X.; Sha, D.; Shi, K.; Ji, X.-L.; Li, B.; Liu, Y.-G. J. Appl. Polym. Sci. 2021, 138, 51811. |
[91] | Anisiei, A.; Andreica, B.-I.; Mititelu-Tartau, L.; Coman, C. G.; Bilyy, R.; Bila, G.; Rosca, I.; Sandu, A.-I.; Amler, E.; Marin, L. Int. J. Biol. Macromol. 2023, 249, 126056. |
[92] | Qiu, Y.-L.; Li, Y.-X.; Zhang, G.-L.; Hao, H.-S.; Hou, H.-M.; Bi, J.-R Carbohydr. Polym. 2024, 323, 121384. |
[93] | Yin, M.-L.; Wang, Y.-F.; Zhang, Y.; Ren, X.-H.; Qiu, Y.-Y.; Huang, T.-S. Carbohydr. Polym. 2020, 232, 115823. |
[94] | Liang, Z. Y. M.S. Thesis, Guangxi University, Nanning, 2022 (in Chinese). |
[94] | (梁兆毅, 硕士论文, 广西大学, 南宁, 2022.) |
[95] | Kudyshkin, V. O.; Abrarova, Z. M.; Bozorov, N. I.; Zhumartova, U. U.; Usmanova, M. M.; Ashurov, N. S.; Rashidova, S. S. Polym. Sci. Ser. B 2024, 66, 51. |
[96] | Chen, X.-J.; Lei, Z.-Y.; Liu, P.; Lei, M.-J.; Xu, H.; Yu, L.-J.; Ao, M.-Z. Carbohydr. Polym. 2023, 316, 120988. |
[97] | Ren, Y.-M.; Huang, L.-M.; Wang, Y.-L; Mei, L.; Fan, R.-R.; He, M.; Wang, C.; Tong, A.-P.; Chen, H.-F.; Guo, G. Carbohydr. Polym. 2020, 247, 116754. |
[98] | Tu, H.; Wu, G.-M.; Yi, Y.; Huang, M.-T.; Liu, R.; Shi, X.-W.; Deng, H.-B. Carbohydr. Polym. 2019, 210, 9. |
[99] | Wu, H.-P.; Gao, B.-T.; Wu, H.-H.; Song, J.-X.; Zhu, L.; Zhou, M.; Linhu, X.-T.; Huang, S.; Zhou, Z.-B.; Wa, Q.-D. Int. J. Biol. Macromol. 2024, 269, 131878. |
[100] | Yue, T.-T.; Li, X.; Wang, X.-X.; Yan, X.; Yu, M.; Ma, J.-W.; Zhou, Y.; Ramakrishna, S.; Long, Y.-Z. Nanoscale Res. Lett. 2018, 13, 239. |
[101] | Xu, H.-Z.; Yagi, S.; Ashour, S.; Du, L.; Hoque, M. E.; Tan, L. Macromol. Mater. Eng. 2023, 308, 2200502. |
[102] | Chen, C.; Jia, X.-Y.; Li, X.-R.; Shi, M.-Y.; Hu, J.-Y.; Song, M.-Y.; Wu, S.-W.; Dai, H.-L.; Wang, X.-G.; Geng, H.-Y. Chem. Eng. J. 2023, 475, 146307. |
[103] | Shen, C.-Y; Wu, M.-L.; Sun, C.; Li, J.-K.; Wu, D.; Sun, C.-D.; He, Y.; Chen, K.-S. Carbohydr. Polym. 2022, 286, 119267. |
[104] | Rahmati, M.; Mills, D. K.; Urbanska, A. M.; Saeb, M. R.; Venugopal, J. R.; Ramakrishna, S.; Mozafari, M. Prog. Mater. Sci. 2021, 117, 100721. |
[105] | Shen, W.-Y.; Wang, Y.-X.; Li, Y.-L.; Cui, Z.-Y.; Yang, Y.-T.; Shi, H.-L.; Xu, C.-F.; Yin, T.-J. Carbohydr. Polym. 2024, 324, 121468. |
[106] | Yin, J.; Xu, L.; Ahmed, A. Adv. Fiber Mater. 2022, 4, 832. |
[107] | Gu, B. K.; Park, S. J.; Kim, M. S.; Kang, C. M.; Kim, J.-I.; Kim, C.-H. Carbohydr. Polym. 2013, 97, 65. |
[108] | Zhang, X.-W.; Lu, Y. Polym. Rev., 2014, 54, 677. |
[109] | Boschetto, F.; Doan, H. N.; Vo, P. P.; Zanocco, M.; Zhu, W.; Sakai, W.; Kinashi, K.; Marin, E.; Pezzotti, G. Mater. Today Chem. 2021, 20, 100461. |
[110] | Zhang, B.-W.; Jiang, Z.; Li, X.; Wu, Z.-Y.; Liu, Y.-M.; Hu, J.; Zhang, C.-H.; Chen, J.-Y.; Zhou, Y.-S.; Rao, J.; Liu, X. Carbohydr. Polym. 2023, 317, 121062. |
[111] | Gao, Y.; Zhang, J.; Su, Y.; Wang, H.; Wang, X.-X.; Huang, L.-P.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. Mater. Horiz. 2021, 8, 426. |
[112] | Daristotle, J. L.; Behrens, A. M.; Sandler, A. D.; Kofinas, P. ACS Appl. Mater. Interfaces 2016, 8, 34951. |
[113] | Shinkawa, M.; Motai, K.; Eguchi, K.; Takarada, W.; Ashizawa, M.; Masunaga, H.; Ohta, N.; Hayamizu, Y.; Matsumoto, H. Membranes 2021, 11, 389. |
[114] | Yang, B.-J.; Tang, B.-L.; Wang, Z.-Y.; Feng, F.; Wang, G.-X.; Zhao, Z.-H.; Xue, Z.; Li, J.-W.; Chen, W.-C. Carbohydr. Polym. 2024, 326, 121618. |
[115] | Shen, C.-Y.; Yang, X.-Z.; Wang, D.; Li, J.-K.; Zhu, C.-Q.; Wu, D.; Chen, K.-S. Carbohydr. Polym. 2024, 326, 121636. |
[116] | Shirvan, A. R.; Nouri, A.; Sutti, A. Eur. Polym. J. 2022, 181, 111681. |
[117] | Shen, X.-Y.; Akbarzadeh, A.; Hu, Q.; Shi, C.; Jin, Y.; Ge, M.-Q. J. Lumin. 2022, 251, 119179. |
[118] | Sarabia-Riquelme, R.; Noble, L. E.; Espejo, P. A.; Ke, Z.-F.; Graham, K. R.; Mei, J.-G.; Paterson, A. F.; Weisenberger, M. C. Adv. Funct. Mater. 2024, 34, 2311379. |
[119] | Zhang, S. H. Ph.D. Dissertation, South China University of Technology, Guangzhou, 2022 (in Chinese). |
[119] | (张思晗, 博士论文, 华南理工大学, 广州, 2022.) |
[120] | Chen, Y.-J.; Zhang, Q.; Zhong, Y.; Wei, P.-D.; Yu, X.-J.; Huang, J.-C.; Cai, J. Adv. Funct. Mater. 2021, 31, 2104368. |
[121] | Shi, X.-W.; Li, X.-X.; Du, Y.-M. Acta Polym. Sinica 2011, 1, 1 (in Chinese). |
[121] | (施晓文, 李晓霞, 杜予民, 高分子学报, 2011, 1, 1.) |
[122] | Qin, Y.-K.; Li, P.-C.; Guo, Z.-Y. Carbohydr. Polym. 2020, 236, 116002. |
[123] | Mirhaj, M.; Tavakoli, M.; Varshosaz, J.; Labbaf, S.; Salehi, S.; Talebi, A.; Kazemi, N.; Haghighi, V.; Alizadeh, M. Carbohydr. Polym. 2022, 292, 119648. |
[124] | He, J.-H.; Liang, Y.-P.; Shi, M.-T.; Guo, B.-L. Chem. Eng. J. 2020, 385, 123464. |
[125] | Harugade, A.; Sherje, A. P.; Pethe, A. React. Funct. Polym. 2023, 191, 105634. |
[126] | Rastegar, A.; Mahmoodi, M.; Mirjalili, M.; Nasirizadeh, N. Carbohydr. Polym. 2021, 269, 118351. |
[127] | Liu, Y.-W.; Wang, S.-Y.; Zhang, R. Int. J. Biol. Macromol. 2017, 103, 1130. |
[128] | Ali, A.; Ahmed, S. Int. J. Biol. Macromol. 2018, 109, 273. |
[129] | Grkovic, M.; Stojanovic, D. B.; Pavlovic, V. B.; Rajilic-Stojanovic, M.; Bjelovic, M.; Uskokovic, P. S. Composites, Part B 2017, 121, 58. |
[130] | El-Okaily, M. S.; El-Rafei, A. M.; Basha, M.; Ghani, N. T. A.; El-Sayed, M. M. H.; Bhaumik, A.; Mostafa, A. A. Int. J. Biol. Macromol. 2021, 182, 1582. |
[131] | Farias, B. S.; Cadaval Jr, T. R. S.; Pinto, L. A. A Int. J. Biol. Macromol. 2019, 123, 210. |
[132] | Yang, X.-X.; Sheng, L.-N.; Ye, Y.-L.; Sun, J.-D.; Ji, J.; Geng, S.-X.; Ning, D.-L.; Zhang, Y.-Z.; Sun, X.-L. Int. J. Biol. Macromol. 2024, 272, 132834. |
[133] | Zou, Y.-C.; Zhang, C.; Wang, P.; Zhang, Y.-P.; Zhang, H. Carbohydr. Polym. 2020, 247, 116711. |
[134] | Li, J.-H.; Tian, X.; Hua, T.; Fu, J.-M.; Koo, M.; Chan, W.; Poon, T. ACS Appl. Bio Mater. 2021, 4, 4014. |
[135] | Zhang, W.; Dai, X.-L.; Zhou, J.-J.; Zhu, G. Fibers Polym. 2017, 18, 290. |
[136] | Song, B.-Q.; Zhang, T.-Y.; Li, X.-F.; Yang, K.-L.; Shan, J.-Y.; Dang, Y.-Z.; Ma, J.-H. Eur. Polym. J. 2023, 197, 112357. |
[137] | Chen, S.; Li, C.-P.; Hou, T.-T.; Cai, Y.; Liang, L.-M.; Chen, L.-M.; Li, M.-S. React. Funct. Polym. 2019, 145, 104379. |
[138] | Anisiei, A.; Oancea, F.; Marin, L. Rev. Chem. Eng. 2023, 39, 31. |
[139] | Jahan, I.; Zhang, L.-F. J. Polym. Environ. 2022, 30, 1709. |
[140] | Liu, K.; Cheng, P.; Wang, Y.; Zhong, W.-B.; Lu, Z.-T.; Li, M.-F.; Liu, Q.-Z.; Wang, W.-W.; Zhu, Q.; Wang, D. Environ. Sci.: Nano 2017, 4, 385. |
/
〈 |
|
〉 |