研究论文

铟锡双金属修饰层协同抑制锌枝晶生长

  • 李奔 ,
  • 赵宇 ,
  • 高欣 ,
  • 孙雨涵 ,
  • 赵宝雁 ,
  • 罗巧梅 ,
  • 鲍晓冰 ,
  • 苟蕾 ,
  • 崔艳华 ,
  • 樊小勇
展开
  • a 长安大学 材料科学与工程学院 西安 710061
    b 中国工程物理研究院电子工程研究所 绵阳 621000

收稿日期: 2024-12-31

  网络出版日期: 2025-03-03

基金资助

国家自然科学基金面上项目(22179011); 西藏自治区重点研发项目(XZ202401ZY0104)

The Indium-tin Bimetallic Modification Layer Synergistically Inhibited Zinc Dendrite Growth

  • Ben Li ,
  • Yu Zhao ,
  • Xin Gao ,
  • Yuhan Sun ,
  • Baoyan Zhao ,
  • Qiaomei Luo ,
  • Xiaobing Bao ,
  • Lei Gou ,
  • Yanhua Cui ,
  • Xiaoyong Fan
Expand
  • a School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China
    b Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang, Sichuan Province 621000, China
; Tel.: 029-82337340

Received date: 2024-12-31

  Online published: 2025-03-03

Supported by

National Natural Science Foundation of China(22179011); Key Research and Development Programs in Tibet Autonomous Region(XZ202401ZY0104)

摘要

水系锌离子电池因其低成本、高安全性和环境友好等优点, 在规模化储能领域展现出巨大的应用潜力. 然而, 枝晶生长、表面钝化以及析氢等副反应导致的锌电极稳定性差和寿命短的问题, 限制了水系锌离子电池在大规模应用中的推广. 本研究通过气相沉积工艺, 在锌电极表面依次沉积了铟锡双金属修饰层, 综合利用铟金属层的高析氢过电位及其较强的锌原子吸附能, 锡金属层较低的锌离子迁移能垒, 协同抑制锌电极枝晶生长、腐蚀和析氢等副反应, 同时加速界面处锌离子的传输动力学. 结果显示, Zn@In@Sn电极在电流密度为1 mA•cm−2, 面积容量为0.5 mAh•cm−2条件下能保持40 mV的低沉积/剥离电位差, 并实现超过3000 h的稳定循环, 远优于纯铟修饰层(64 mV, 1500 h)和纯锡修饰层(85 mV, 1600 h). 与MnO2正极材料匹配组装的全电池, 在1 A•g−1的电流密度下, 经过1000个稳定循环后, 容量保持127.9 mAh•g−1, 显示出优异的电化学性能和循环稳定性.

本文引用格式

李奔 , 赵宇 , 高欣 , 孙雨涵 , 赵宝雁 , 罗巧梅 , 鲍晓冰 , 苟蕾 , 崔艳华 , 樊小勇 . 铟锡双金属修饰层协同抑制锌枝晶生长[J]. 化学学报, 2025 , 83(3) : 237 -301 . DOI: 10.6023/A24120389

Abstract

Aqueous zinc-ion batteries are considered as a promising candidate for future grid energy storage due to their cost-effectiveness, safety, and environmental compatibility, however their large scale application is impeded by the stability and longevity issues stemming from dendrite growth, and side reactions such as passivation and hydrogen evolution. Herein, an indium-tin bimetallic layer is introduced onto the Zn electrode surface via sequential vapor deposition of indium and tin, comprehensively utilizing the indium layer with higher hydrogen evolution overpotential and greater adsorption energy for Zn atoms, the Sn layer with lower Zn2+ migration barrier to synergistically inhibit Zn dendrites, corrosion and hydrogen evolution, and simultaneously facilitate rapid transport of Zn2+ at the interface. The thickness of In-Sn layer is determined to be only two hundred nanometers, which can not only efficiently protect Zn electrode but also avoid the energy loss due to the increase of Zn electrode resistance. Both the X-ray diffraction (XRD) peaks of In and Sn are detected, assuring the synergistical effect of In and Sn layer. The contact angle of 2.0 mol•L−1 ZnSO4 on Zn electrode decreases from 102.31° to 54.35° after coating In-Sn layer, decreasing the contact impedance between Zn electrode and electrolyte. The linear sweep voltammetry (LSV) results demonstrate the hydrogen evolution potential decreases from -1.776 V (pure Zn) to -1.979 V after coating In-Sn layer, indicating less hydrogen evolution and side reactions. The corrosion current density of Zn@In@Sn displays the smallest value of 0.868 mA•cm−2, compared with those of Zn (4.017 mA•cm−2) and Zn@In (3.515 mA•cm−2), demonstrating less corrosion. Consequently, the Zn@In@Sn electrode demonstrates an extended lifespan of up to 3000 h under low polarization of 40 mV at a current density of 1 mA•cm−2 and an areal capacity of 0.5 mAh•cm−2, obviously better than those of Zn@In (64 mV, 1500 h) and Zn@Sn (85 mV, 1600 h). The full cell using manganese dioxide as the cathode and Zn@In@Sn as the anode maintains approximately 127.9 mAh•g−1 after 1000 stable cycles at a current density of 1 A•g−1.

参考文献

[1]
Lee, J. H.; Kim, R.; Kim, S.; Heo, J.; Kwon, H.; Yang, J. H.; Kim, H. T. Energ. Environ. Sci. 2020, 13, 2839.
[1]
Hao, J. N.; Yuan, L. B.; Johannessen, B.; Zhu, Y. L.; Jiao, Y.; Ye, C.; Xie, F. X.; Qiao, S. Z. Angew. Chem., Int. Ed. 2021, 60, 25114.
[2]
Ruan, P. C.; Liang, S. Q.; Lu, B. G.; Fan, H. J.; Zhou, J. Angew. Chem., Int. Ed. 2022, 61, e202200598.
[3]
Hu, X.; Zhao, Z.; Yang, Y.; Zhang, H.; Lai, G.; Lu, B.; Zhou, P.; Chen, L.; Zhou, J. InfoMat. 2024, 6, e12620.
[4]
Ming, J.; Guo, J.; Xia, C.; Wang, W.; Alshareef, H. N. Mater. Sci. Eng. R-Rep. 2019, 135, 58.
[5]
Xie, X. S.; Liang, S. Q.; Gao, J. W.; Guo, S.; Guo, J. B.; Wang, C.; Xu, G. Y.; Wu, X. W.; Chen, G.; Zhou, J. Energ. Environ. Sci. 2020, 13, 503.
[6]
Chen, A. S.; Zhao, C. Y.; Guo, Z. K.; Lu, X. Y.; Liu, N. N.; Zhang, Y.; Fan, L. S.; Zhang, N. Q. Energy Storage Mater. 2022, 44, 353.
[7]
Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Mater. Today Energy 2021, 20, 100692.
[8]
Ji, H. M.; Xie, C. L.; Zhang, Q.; Li, Y. X.; Li, H. H.; Wang, H. Y. Acta Chim. Sinica 2023, 81, 29 (in Chinese).
[8]
(姬慧敏, 谢春霖, 张旗, 李熠鑫, 李欢欢, 王海燕, 化学学报, 2023, 81, 29.)
[9]
Huang, S.; Yuan, Z.; Salla, M.; Wang, X.; Zhang, H.; Huang, S.; Lek, D. G.; Li, X.; Wang, Q. Energ. Environ. Sci. 2023, 16, 438.
[10]
Zhang, X.; Li, J.; Liu, Y.; Lu, B.; Liang, S.; Zhou, J. Nat. Commun. 2024, 15, 2735.
[11]
Liang, Y. L.; Dong, H.; Aurbach, D.; Yao, Y. Nat. Energy 2020, 5, 646.
[12]
Zhou, Y.; Yuan, C.; Wang, S. J.; Zhu, Y. J.; Cheng, S.; Yang, X.; Yang, Y.; Hu, J.; He, J. L.; Li, Q. Energy Storage Mater. 2020, 28, 255.
[13]
Yuan, L. B.; Hao, J. N.; Kao, C. C.; Wu, C.; Liu, H. K.; Dou, S. X.; Qiao, S. Z. Energ. Environ. Sci. 2021, 14, 5669.
[14]
Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T. Nano-Micro Lett. 2022, 14, 42.
[15]
Guo, X.; He, G. J. Mater. Chem. A 2023, 11, 11987.
[16]
Zhou, J.; Shan, L. T.; Tang, B. Y.; Liang, S. Q. Chin. Sci. Bull. 2020, 65, 3562 (in Chinese).
[16]
(周江, 单路通, 唐博雅, 梁叔全, 科学通报, 2020, 65, 3562.)
[17]
Liang, G. J.; Zhu, J. X.; Yan, B. X.; Li, Q.; Chen, A.; Chen, Z.; Wang, X. Q.; Xiong, B.; Fan, J.; Xu, J.; Zhi, C. Y. Energ. Environ. Sci. 2022, 15, 1086.
[18]
Long, X. T.; Liu, Y. Z.; Wang, D. X.; Nie, Y. H.; Lai, X. Y.; Luo, D.; Wang, X. J. Mater. Chem. A 2024, 12, 13181.
[19]
Wang, M.; Wang, Q.; Yao, H.; Su, F.; Shan, Z.; Shen, H.; Liu, T.; Zhao, J.; Ding, C. J. Alloy. Compd. 2023, 947, 169678.
[20]
Lu, K.; Jing, H.; Guo, Q.; Liu, C.; Liu, B.; Xia, X.; Wang, F.; Lei, W.; Xia, M.; Hao, Q. J. Energy Chem. 2024, 102, 37.
[21]
Yang, Q.; Bang, G. J.; Guo, Y.; Liu, Z. X.; Yon, B. X.; Wang, D. H.; Huang, Z. D.; Li, X. L.; Fan, J.; Zhi, C. Y. Adv. Mater. 2019, 31, 1903778.
[22]
Wang, A. R.; Zhou, W. J.; Huang, A. X.; Chen, M. F.; Tian, Q. H.; Chen, J. Z. J. Colloid Interf. Sci. 2021, 586, 362.
[23]
Mao, C.; Chang, Y.; Zhao, X.; Dong, X.; Geng, Y.; Zhang, N.; Dai, L.; Wu, X.; Wang, L.; He, Z. J. Energy Chem. 2022, 75, 135.
[24]
Kang, L. T.; Cui, M. W.; Jiang, F. Y.; Gao, Y. F.; Luo, H. J.; Liu, J. J.; Liang, W.; Zhi, C. Y. Adv. Energy Mater. 2018, 8, 1801090.
[25]
Deng, C. B.; Xie, X. S.; Han, J. W.; Tang, Y.; Gao, J. W.; Liu, C. X.; Shi, X. D.; Zhou, J.; Liang, S. Q. Adv. Funct. Mater. 2020, 30, 2000599.
[26]
Zhang, H.; Li, F.; Li, Z.; Gao, L.; Xu, B.; Wang, C. Batteries 2024, 10, 178.
[27]
Hao, Z. T.; Zhao, J. F.; Li, H. T.; Li, Z.; Pan, L.; Li, J. Acta Chim. Sinica 2024, 82, 416 (in Chinese).
[27]
(郝再涛, 赵健飞, 李慧同, 李展, 潘朗, 李江, 化学学报, 2024, 82, 416.)
[28]
Hao, J. N.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Zhang, S.; Bo, G. Y.; Wang, C. S.; Guo, Z. P. Adv. Funct. Mater. 2020, 30, 2001263.
[29]
Khamsanga, S.; Uyama, H.; Nuanwat, W.; Pattananuwat, P. Sci. Rep. 2022, 12, 8689.
[30]
Cui, M. W.; Xiao, Y.; Kang, L. T.; Du, W.; Gao, Y. F.; Sun, X. Q.; Zhou, Y. L.; Li, X. M.; Li, H. F.; Jiang, F. Y.; Zhi, C. Y. ACS Appl. Energy Mater. 2019, 2, 6490.
[31]
Song, R.; Zhao, M. Q.; Wang, S.; Lu, Y; Bao, X. B.; Luo, Q. M.; Gou, L.; Fan, X. Y.; Li, D. L. Acta Chim. Sinica 2024, 82, 426 (in Chinese).
[31]
(宋瑞, 赵铭钦, 王帅, 卢垚, 鲍晓冰, 罗巧梅, 苟蕾, 樊小勇, 李东林, 化学学报, 2024, 82, 426.)
[32]
Liang, P. C.; Yi, J.; Liu, X. Y.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y.; Zhang, J. J. Adv. Funct. Mater. 2020, 30, 528.
[33]
Du, W. C.; Ang, E. H. X.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Li, C. C. Energ. Environ. Sci. 2020, 13, 3330.
[34]
Wang, Y. Y.; Chen, Y. J.; Liu, W.; Ni, X. Y.; Qing, P.; Zhao, Q. W.; Wei, W. F.; Ji, X. B.; Ma, J. M.; Chen, L. B. J. Mater. Chem. A 2021, 9, 8452.
[35]
Wu, P.; Xu, L. Y.; Xiao, X. M.; Ye, X. M.; Meng, Y. Z.; Liu, S. Adv. Mater. 2024, 36, 2306601.
[36]
Wang, S.; Sun, Y. H.; Gao, X.; Song, R.; Zhao, M. Q.; Lu, Y.; Bao, X. B.; Luo, Q. M.; Gou, L.; Fan, X. Y. Chem. J. Chin. Univ. 2024, 45, 67 (in Chinese).
[36]
(王帅, 孙雨涵, 高欣, 宋瑞, 赵铭钦, 卢垚, 鲍晓冰, 罗巧梅, 苟蕾, 樊小勇, 高等学校化学学报, 2024, 45, 67.)
[37]
Li, B. Y.; Yang, K.; Ma, J. B.; Shi, P. R.; Chen, L. K.; Chen, C. M.; Hong, X.; Cheng, X.; Tang, M. C.; He, Y. B.; Kang, F. Y. Angew. Chem., Int. Ed. 2022, 61, e202212587.
[38]
Han, W.; Zheng, X. D.; Yang, K.; Tsang, C. S.; Zheng, F. Y.; Wong, L. W.; Lai, K. H.; Yang, T. F.; Wei, Q.; Li, M. J.; Io, W. F.; Guo, F.; Cai, Y.; Wang, N.; Hao, J. H.; Lau, S. P.; Lee, C. S.; Ly, T. H.; Yang, M.; Zhao, J. Nat. Nanotechnol. 2023, 18, 55.
[39]
Fan, X. Y.; Zhu, Y. Q.; Wu, Y.; Zhang, S.; Xu, L.; Gou, L.; Li, D. L. Chem. J. Chin. Univ. 2022, 43, 65 (in Chinese).
[39]
(樊小勇, 朱永强, 毋妍, 张帅, 许磊, 苟蕾, 李东林, 高等学校化学学报, 2022, 43, 65.)
[40]
Chen, M.; Gong, Y.; Zhao, Y.; Song, Y.; Tang, Y.; Zeng, Z.; Liang, S.; Zhou, P.; Lu, B.; Zhang, X.; Zhou, J. Natl. Sci. Rev. 2024, 11, nwae205.
[41]
Meng, Y.; Wang, M.; Xu, J.; Xu, K.; Zhang, K.; Xie, Z.; Zhu, Z.; Wang, W.; Gao, P.; Li, X.; Chen, W. Angew. Chem. Int. Ed. 2023, 62, e202308454.
[42]
Liu, W.; Zhao, Q. W.; Yu, H. M.; Wang, H.; Huang, S. Z.; Zhou, L. J.; Wei, W. F.; Zhang, Q. C.; Ji, X. B.; Chen, Y. J.; Chen, L. B. Adv. Funct. Mater. 2023, 33, 2302661.
[43]
Xin, Y.; Qi, J.; Xie, H.; Ge, Y.; Wang, Z.; Zhang, F.; He, B.; Wang, S.; Tian, H. Adv. Funct. Mater. 2024, 34, 2403222.
[44]
Luo, W.; Wang, Y.; Chou, S.; Xu, Y.; Li, W.; Kong, B.; Dou, S. X.; Liu, H. K.; Yang, J. Nano Energy 2016, 27, 255.
[45]
Lin, J. H.; Chen, C.-Y. Surf. Coat. Tech. 2022, 436, 128270.
文章导航

/