收稿日期: 2025-01-10
网络出版日期: 2025-03-03
Recent Advances in the Mesylation
Received date: 2025-01-10
Online published: 2025-03-03
周泉 , 蒋佳怡 , 罗年华 , 黄家翩 . 甲磺酰化反应的最新研究进展[J]. 化学学报, 2025 , 83(3) : 274 -286 . DOI: 10.6023/A25010015
In recent years, organic reactions involving mesylation have attracted the attention of organic chemists and have made great progress. The sources of methylsulfonyl group mainly include: (1) methylsulfonyl chloride; (2) methylsulfinate salts; (3) dimethyl sulfoxide; (4) dimethyl sulfite; (5) SO2 and methyl sources in situ generating. Mesylation can be achieved by means of transition-metal-free catalysis, transition metal catalysis, photocatalysis, electrocatalysis, etc. In this review, the applications of mesylation in recent years are summarized. The photocatalysis or electrocatalysis of radical methylsulfonation are emphasized. Additionally, mesylation reactions have been aroused considerable interests both from methylsulfonyl structural standpoint and its application in drugs. Given the increasing application of methylsulfonyl group in the development of drugs and unarguable importance of methylsulfonyl compounds in medicinal chemistry and agrochemistry, it is no doubt that the methylsulfonyl skeleton is a bioactive molecule and is currently in the “emerging mesylation motifs”. Although the synthesis and application of structurally diverse methylsulfonyl compounds have been witnessed in the past decade, the most widely used methods for the preparation of these compounds include all kinds of modern techniques with various methylsulfonyl reagent, which can be generated from various kinds of precursors. For the transition metal-catalyzed synthesis of methylsulfonyl compounds, some common metal salts (such as copper, copper, palladium, iron, nickel) are used as catalysts. Moreover, the visible-light synergistic transition metal catalysis strategy is a simple and efficient method for the construction of methylsulfonyl compounds, and the asymmetric synthesis of methylsulfonyl compounds can be achieved in the presence of chiral ligands. In multi-component reactions, SO2-insertion has some advantages that cannot be achieved by traditional mesylated reagents for the direct mesylation of alkenes or alkynes. Despite the remarkable achievements in the synthesis of methylsulfonyl compounds, there are still many issues that need to be addressed. For instance, multi-component mesylation reactions are rarely applied in electrocatalysis, asymmetric catalysis fields and flow chemistry. Hopefully, mesylation can gradually appear in photo- and electro-catalyzed radical chemistry, and the related asymmetric reactions will also get more attention and development in the near future.
[1] | (a) Schonherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256. |
[1] | (b) Sun, S.; Fu, J. Bioorg. Med. Chem. Lett. 2018, 28, 3283. |
[1] | (c) Huang, J.; Chen, Z.; Wu, J. ACS Catal. 2021, 11, 10713. |
[2] | (a) Frampton, J. E.; Basset-Séguin, N. Drugs 2018, 78, 1145. |
[2] | (b) Sturino, C. F.; O'Neill, G.; Lachance, N.; Boyd, M.; Berthelette, C.; Labelle, M.; Li, L.; Roy, B.; Scheigetz, J.; Tsou, N.; Aubin, Y.; Bateman, K. P.; Chauret, N.; Day, S. H.; Lévesque, J.; Seto, C.; Silva, J. H.; Trimble, L. A.; Carriere, M.; Denis, D.; Greig, G.; Kargman, S.; Lamontagne, S.; Mathieu, M.; Sawyer, N.; Slipetz, D.; Abraham, W. M.; Jones, T.; McAuliffe, M.; Piechuta, H.; Nicoll-Griffith, D. A.; Wang, Z.; Zamboni, R.; Young, R. N.; Metters, K. M. J. Med. Chem. 2007, 50, 794. |
[2] | (c) Prasit, P.; Wang, Z.; Brideau, C.; Chan, C.-C.; Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J. F.; Ford-Hutchinson, A. W.; Gauthier, J. Y.; Gordon, R.; Guay, J.; Gresser, M.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Léger, S.; Mancini, J.; O'Neill, G. P.; Ouellet, M.; Percival, M. D.; Perrier, H.; Riendeau, D.; Rodger, I.; Tagari, P.; Thérien, M.; Vickers, P.; Wong, E.; Xu, L.-J.; Young, R. N.; Zamboni, R. et al. Bioorg. Med. Chem. Lett. 1999, 9, 1773. |
[2] | (d) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200. |
[2] | (e) Wen, Y.; Zhang, S.; Hou, G.; Yu, Y.; Gao, J. Chin. J. Org. Chem. 2016, 36, 642 (in Chinese). |
[2] | (温彦鹏, 张爽, 侯广峰, 于颖慧, 高金胜, 有机化学, 2016, 36, 642). |
[2] | (f) Wu, Y.; Yan, Y.; Liao, W. Chin. J. Org. Chem. 2023, 43, 3713 (in Chinese). |
[2] | 吴宇恒, 颜岩, 寮渭巍, 有机化学, 2023, 43, 3713). |
[3] | (a) Zhao, W.; Liu, Y. Chlor-Alkali Industry 1999, (5), 40 (in Chinese). |
[3] | (赵维生, 刘雅娟, 氯碱工业, 1999, (5), 40.) |
[3] | (b) Hell, S. M.; Meyer, C. F.; Misale, A.; Sap, J. B. I.; Christensen, K. E.; Willis, M. C.; Trabanco, A. A.; Gouverneur, V. Angew. Chem. Int. Ed. 2020, 59, 11620. |
[3] | (c) Wu, D.; Jiang, M.; Wang, J.-J.; Yu, W. Org. Lett. 2023, 25, 2073. |
[4] | Johnson, T. C.; Elbert, B. L.; Farley, A. J. M.; Gorman, T. W.; Genicot, C.; Lallemand, B.; Pasau, P.; Flasz, J.; Castro, J. L.; MacCoss, M.; Dixon, D. J.; Paton, R. S.; Scho?eld, C. J.; Smith, M. D.; Willis, M. C. Chem. Sci. 2018, 9, 629. |
[5] | Higham, J. I.; Ma, T.-K.; Bull, J. A. Org. Lett. 2023, 25, 5285. |
[6] | (a) Zheng, Y.; You, Y.; Shen, Q.; Zhang, J.; Liu, L.; Duan, X.-H. Org. Chem. Front. 2020, 7, 2069. |
[6] | (b) Vega, K. B.; Delgado, J. A. C.; Pugnal, L. V. B. L.; Konig, B.; Correia, J. T. M.; Paixao, M. W. Chem. Eur. J. 2023, 29, e202203625. |
[7] | (a) Liu, M.-S.; Shu, W. JACS Au 2023, 3, 1321. |
[7] | (b) Xia, S.; Wu, L.; Zhai, G.; Wang, Z.; Wu, J. Org. Chem. Front. 2023, 10, 4002. |
[7] | (c) Xu, Y.; Wang, S.; Liu, Z.; Guo, M.; Lei, A. Chem. Commun. 2023, 59, 3707. |
[7] | (d) Rao, W.-H.; Gao, C.; Jiang, L.-L.; Zhou, F.-Y.; Liu, J.-F.; Zou, G.-D. J. Org. Chem. 2024, 89, 12681. |
[8] | Lipp, B.; Kammer, L. M.; Kücükdisli, M.; Luque, A.; Kühlborn, J.; Pusch, S.; Matulevi?iūt?, G.; Schollmeyer, D.; ?a?kus, A.; Opatz, T. Chem. Eur. J. 2019, 25, 8965. |
[9] | Chen, Y.; Zhu, K.; Huang, Q.; Lu, Y. Chem. Sci. 2021, 12, 13564. |
[10] | Wang, L.; Ma, R.; Sun, J.; Zheng, G.; Zhang, Q. Chem. Sci. 2022, 13, 3169. |
[11] | Li, M.-D.; Wang, Z.-H.; Zhu, H.; Wang, X.-R.; Wang, J.-R.; Lin, T.-Y. Angew. Chem. Int. Ed. 2023, 62, e202313911. |
[12] | Yin, Z.; Yu, Y.; Mei, H.; Han, J. Green Chem. 2021, 23, 3256. |
[13] | Chandu, P.; Mallick, M.; Srinivasu, V.; Sureshkumar, D. Chem. Eur. J. 2024, 30, e202303187. |
[14] | Liu, Q.-Q.; Li, J.-Z.; Wang, Y.-J.; Leng, Y.-N.; Huang, Y.-W.; Meng, X.-C.; Leng, B.-R.; Wang, D.-C.; Zhu, Y.-L. J. Org. Chem. 2023, 88, 17227. |
[15] | He, J.; Chen, G.; Zhang, B.; Li, Y.; Chen, J.-R.; Xiao, W.-J.; Liu, F.; Li, C. Chem 2020, 6, 1149. |
[16] | Granados, A.; Cabrera-Afonso, M. J.; Escolano, M.; Badir, S. O.; Molander, G. A. Chem Catal. 2022, 2, 898. |
[17] | Mdluli, V.; Lehnherr, D.; Lam, Y.-H.; Ji, Y.; Newman, J. A.; Kim, J. Adv. Synth. Catal. 2023, 365, 3876. |
[18] | Qin, S.; Yang, M.; Xu, M.; Peng, Z.-H.; Cai, J.; Wang, S.; Gao, H.; Zhou, Z.; Hashmi, A. S. K.; Yi, W.; Zeng, Z. Nat. Commun. 2024, 15, 7428. |
[19] | Huang, M.-H.; Zhu, C.-F.; He, C.-L.; Zhu, Y.-L.; Hao, W.-J.; Wang, D.-C.; Tu, S.-J.; Jiang, B. Org. Chem. Front. 2018, 5, 1643. |
[20] | Zhang, J.; Cheng, S.; Cai, Z.; Liu, P.; Sun, P. J. Org. Chem. 2018, 83, 9344. |
[21] | Chang, M.-Y.; Chen, H.-Y.; Tsai, Y.-L. Org. Lett. 2019, 21, 1832. |
[22] | (a) Xin, Y.-H.; Guo, Y.-Q.; Zhang, X.-G.; Deng, C.-L. J. Org. Chem. 2021, 86, 17496. |
[22] | (b) Zhuang, J.-Q.; Guo, Y.-Q.; Deng, C.-L.; Zhang, X.-G.; Tu, H.-Y. J. Org. Chem. 2023, 88, 10753. |
[23] | Singha, T.; Bapat, N. A.; Mishra, S. K.; Hari, D. P. Org. Lett. 2024, 26, 6396. |
[24] | (a) He, F.-S.; Gong, X.; Rojsitthisak, P.; Wu, J. J. Org. Chem. 2019, 84, 13159. |
[24] | (b) Tian, X.; Chen, L.; Zhu, T.; Wu, J. Org. Chem. Front. 2023, 10, 4821. |
[25] | He, Y.; Yang, J.; Liu, Q.; Zhang, X.; Fan, X. J. Org. Chem. 2020, 85, 15600. |
[26] | He, F.-S.; Zhang, M.; Zhang, M.; Luo, X.; Wu, J. Org. Chem. Front. 2021, 8, 3746. |
[27] | Hou, X.; Liu, H.; Huang, H. Nat. Commun. 2024, 15, 1480. |
[28] | Wang, Z.; Ma, R.; Gu, C.; He, X.; Shi, H.; Bai, R.; Shi, R. Adv. Sci. 2024, 11, 2406228. |
[29] | Nolla-Saltiel, R.; Ariki, Z. T.; Schiele, S.; Alpin, J.; Tahara, Y.; Yokogawa, D.; Nambo, M.; Crudden, C. M. Nat. Chem. 2024, 16, 1445. |
[30] | For some selected examples: (a) Liu, G.; Fan, C.; Wu, J. Org. Biomol. Chem. 2015, 13, 1592. |
[30] | (b) Zheng, D.; Wu, J. Sulfur Dioxide Insertion Reactions for Organic Synthesis, Nature Springer, Berlin, 2017. |
[30] | (c) Qiu, G.; Zhou, K.; Wu, J. Org. Chem. Front. 2018, 5, 691. |
[30] | (d) Qiu, G.; Lai, L.; Cheng, J.; Wu, J. Chem. Commun. 2018, 54, 10405. |
[30] | (e) Qiu, G.; Zhou, K.; Wu, J. Chem. Commun. 2018, 54, 12561. |
[30] | (f) Ye, S.; Qiu, G.; Wu, J. Chem. Commun. 2019, 55, 1013. |
[30] | (g) Ye, S.; Yang, M.; Wu, J. Chem. Commun. 2020, 56, 4145. |
[30] | (h) Huang, J.; Liu, F.; Zeng, L.-H.; Li, S.; Chen, Z.; Wu, J. Nat. Commun. 2022, 13, 7081. |
[30] | (i) Huang, J.; Wang, C.; Wang, X.; Zhou, X.; Xiao, W.; Wu, J. Sci. China Chem. 2025, 68, 257. |
[31] | (a) Zhu, T.; Rojsitthisak, P.; Wu, J. Org. Chem. Front. 2020, 7, 4050. |
[31] | (b) Li, W.; Wang, C.; Zhu, T.; Liu, G.; Wu, J. Chem. Commun. 2024, 60, 8212. |
[32] | He, F.-S.; Bao, P.; Tang, Z.; Yu, F.; Deng, W.-P.; Wu, J. Org. Lett. 2022, 24, 2955. |
[33] | Gong, X.; Wang, M.; Ye, S.; Wu, J. Org. Lett. 2019, 21, 1156. |
/
〈 |
|
〉 |