化学学报 >

0 25030069 - 25030069

DOI: https://doi.org/10.6023/A25030069

综述

水系有机液流电池正极储能材料研究进展

  • 李国宝 ,
  • 刘睿卿 ,
  • 季云龙 ,
  • 王盼
展开
  • a(国科大杭州高等研究院,化学与材料科学学院,杭州,310024)
    b(西湖大学,理学院,杭州,310030)
★中国青年化学家专辑.

网络出版日期: 2025-03-28

基金资助

项目受国家自然科学基金(22422803、22101064、22375167),国家重点研发计划 (2022YFB2405100, 2022YFB2405000),国科大杭州高等研究院专项资金(2023HIAS-Y018)和浙江省自然科学基金(XHD24B0501)资助

Research Progress in Positive Redox-active Materials for Aqueous Organic Redox Flow Batteries

Expand

Online published: 2025-03-28

Supported by

National Natural Science Foundation of China (22422803, 22101064, 22375167), the National Key R&D Program of China (2022YFB2405100, 2022YFB2405000), the Research Funds of Hangzhou Institute for Advanced Study, UCAS (2023HIAS-Y018), and Zhejiang Provincial Natural Science Foundation of China (XHD24B0501).

摘要

水系有机液流电池作为一种高效、安全、性能可调的大规模储能技术,近年来受到广泛关注。本文总结了水系有机液流电池正极材料的研究进展,重点探讨了不同类型的有机正极材料,如二茂铁及其衍生物、铁氰化物及其他铁基配合物、氮氧自由基衍生物、醌类化合物、吩噻嗪衍生物等有机正极材料的结构特性、电化学性能与电池表现。研究表明,通过分子设计与功能化,有机活性分子的氧化还原电位、溶解度和稳定性均得到显著提升,从而优化了电池整体性能。尽管该领域取得了显著进展,水系有机液流电池正极材料在电池长时循环稳定性、能量密度提升和成本控制等方面仍存在诸多挑战,亟待进一步研究解决。

本文引用格式

李国宝 , 刘睿卿 , 季云龙 , 王盼 . 水系有机液流电池正极储能材料研究进展[J]. 化学学报, 0 : 25030069 -25030069 . DOI: 10.6023/A25030069

Abstract

Aqueous organic redox flow batteries, recognized as a promising large-scale energy storage technology due to their high efficiency, inherent safety, tunable performance characteristics, have garnered significant research interest in recent years. This review systematically summarizes recent advances in positive redox-active materials for AORFBs, with a focused analysis of representative organic electroactive species, including ferrocene derivatives, ferrocyanides/iron-based complexes, nitroxide radicals, quinones, phenothiazine-based compounds. Through molecular engineering strategies such as functional group modification, conjugation extension, electronic structure modulation, critical properties of organic active materials, including redox potentials, solubility in aqueous electrolytes, chemical, electrochemical stability, have been substantially enhanced, leading to marked improvements in battery performance metrics. Despite these advancements, the practical deployment of organic positive materials continues to face challenges related to long-term cycling stability under operational conditions, limited energy density, cost-effectiveness in scalable synthesis, processing, requiring further research, solutions

参考文献

[1] Zhu Z.; Jiang T.; Ali M.; Meng Y.; Jin Y.; Cui, Y., Chen W.; Chem. Rev. 2022, 122, 16610-16751.
[2] Dunn B.; Kamath, H., Tarascon, J. M.; Science 2011, 334, 928-935.
[3] Xu X.; Zhang, C., Li X.; Chin. Sci. Bull. 2024, 70, 1230-1246
(in Chinese).(许晓璇, 张长昆, 李先锋,科学通报,2024, 70, 1230-1246.)
[4] Soloveichik G. L.;Chem. Rev. 2015, 115, 11533-11558.
[5] Li M.; Odom S. A.; Pancoast A. R.; Robertson L. A.; Vaid T. P.; Agarwal G.; Doan H. A.; Wang Y. L.; Suduwella T. M.; Bheemireddy S. R.; Ewoldt R. H.; Assary R. S.; Zhang L.; Sigman, M. S., Minteer, S. D.; ACS Energy Lett. 2021, 6, 3932-3943.
[6] Leung P.; Shah A. A.; Sanz L.; Flox C.; Morante J. R.; Xu Q.; Mohamed M. R.; De León, C. P., Walsh, F. C.;J. Power Sources 2017, 360, 243-283.
[7] Huskinson B.; Marshak M. P.; Suh C.; Er S.; Gerhardt M. R.; Galvin C. J.; Chen X.; Aspuru-Guzik, A.; Gordon, R. G., Aziz, M. J.;Nature 2014, 505, 195-198.
[8] Lin K.; Chen Q.; Gerhardt M. R.; Tong L.; Kim S. B.; Eisenach L.; Valle A. W.; Hardee D.; Gordon R. G.; Aziz, M. J., Marshak, M. P.; Science 2015, 349, 1529-1532.
[9] Kong T.; Dong, X., Wang Y.; Sci. Sin. Chim. 2023, 53, 1419-1436
(in Chinese).(孔涛逸, 董晓丽, 王永刚,中国科学:化学,2023, 53, 1419-1436)
[10] Aaron D.; Tang Z. J.; Papandrew, A. B., Zawodzinski, T. A.; J. Appl. Electrochem. 2011, 41, 1175-1182.
[11] Kwabi D. G.; Ji, Y., Aziz, M. J.; Chem. Rev. 2020, 120, 6467-6489.
[12] Brushett F. R.; Aziz, M. J., Rodby, K. E.; ACS Energy Lett. 2020, 5, 879-884.
[13] Winsberg J.; Hagemann T.; Janoschka T.; Hager, M. D., Schubert, U. S.; Angew. Chem. Int. Ed. 2017, 56, 686-711.
[14] Yang G.; Zhu Y.; Hao Z.; Lu Y.; Zhao Q.; Zhang, K., Chen J.; Adv. Mater. 2023, 35, e2301898.
[15] Peng K.; Liu J.; Tang G.; Yang, Z., Xu T.; Energy Storage Sci. Technol. 2022, 11, 1246-1263
(in Chinese).(彭康,刘俊敏,唐珙根,杨正金,徐铜文,储能科学与技术,2022, 11, 1246-1263.)
[16] Peng K.; Zuo P.; Yang, Z., Xu T.; Membr. Sci. Tech. 2022, 43, 98-111
(in Chinese).(彭康,刘俊敏,唐珙根,杨正金,徐铜文,膜科学与技术,2022, 43, 98-111.)
[17] Fischer P.; Mazur, P., Krakowiak J.; Molecules 2022, 27, 560.
[18] Mouselly M.; Alawadhi, H., Senthilkumar, S. T.; Curr. Opin. Electrochem. 2024, 48, 101581.
[19] Kwabi D. G.; Lin K.; Ji Y.; Kerr E. F.; Goulet M.-A.;De Porcellinis, D.; Tabor, D. P.; Pollack, D. A.; Aspuru-Guzik, A.; Gordon, R. G., Aziz, M. J.; Joule 2018, 2, 1894-1906.
[20] Ji Y. L.; Goulet M. A.; Pollack D. A.; Kwabi D. G.; Jin S. Y.; De Porcellinis, D.; Kerr, E. F.; Gordon, R. G., Aziz, M. J.;Adv. Energy Mater. 2019, 9, 1900039.
[21] Liu T.; Wei X.; Nie Z.; Sprenkle, V., Wang W.; Adv. Energy Mater. 2015, 6, 1501449.
[22] Liu Y. H.; Goulet M. A.; Tong L. C.; Liu Y. Z.; Ji Y. L.; Wu L.; Gordon R. G.; Aziz M. J.; Yang, Z. J., Xu, T. W.; Chem 2019, 5, 1861-1870.
[23] Hu S.; Li T.; Huang M.; Huang J.; Li W.; Wang L.; Chen Z.; Fu Z.; Li, X., Liang Z.; Adv. Mater. 2021, 33, e2005839.
[24] Hollas A.; Wei X. L.; Murugesan V.; Nie Z. M.; Li B.; Reed D.; Liu J.; Sprenkle, V., Wang W.; Nat. Energy 2018, 3, 508-514.
[25] Xu J. C.; Pang S.; Wang X. Y.; Wang, P., Ji, Y. L.; Joule 2021, 5, 2437-2449.
[26] Pang S.; Wang X.; Wang, P., Ji Y.; Angew. Chem. Int. Ed. 2021, 60, 5289-5298.
[27] Pang S.; Jin S.; Yang F.; Alberts M.; Li L.; Xi D.; Gordon R. G.; Wang P.; Aziz, M. J., Ji, Y.; Nat. Energy 2023, 8, 1126-1136.
[28] Qu K.K., L. Y. H., Hong D., Shen Z.X., Han X.Z., Zhang X.;Energy Storage Sci. Technol. 2023, 12, 1570-1588
(in Chinese).(屈康康,刘亚华,洪叠,沈兆曦,韩效钊,张旭,储能科学与技术,2023, 12, 1570-1588.)
[29] Li Z.; Jiang T.; Ali M.; Wu, C., Chen W.; Energy Storage Mater. 2022, 50, 105-138.
[30] Chen Q.; Li Y.; Liu Y.; Sun P.; Yang, Z., Xu T.; ChemSusChem 2021, 14, 1295-1301.
[31] Hu B.; Debruler C.; Rhodes, Z., Liu, T. L.; J. Am. Chem. Soc. 2017, 139, 1207-1214.
[32] Beh E. S.;De Porcellinis, D.; Gracia, R. L.; Xia, K. T.; Gordon, R. G., Aziz, M. J.;ACS Energy Lett. 2017, 2, 639-644.
[33] Yu J.; Salla M.; Zhang H.; Ji Y.; Zhang F.; Zhou, M., Wang Q.; Energy Storage Mater. 2020, 29, 216-222.
[34] Zhao Z. L.; Zhang B. S.; Schrage B. R.; Ziegler, C. J., Boika, A.; ACS Appl. Energy Mater. 2020, 3, 10270-10277.
[35] Yao Y. W.; Xu H.; Tian Z. Z.; Zhang J.; Zhan F. X.; Yan, M., Jia, C. K.; ACS Appl. Energy Mater. 2021, 4, 8052-8058.
[36] Luo J.; Hu B.; Hu M.; Wu, W., Liu, T. L.; Angew. Chem. Int. Ed. 2022, 61, e202204030.
[37] Luo J.; Hu M. W.; Wu W. D.; Yuan, B., Liu, T. L.; Energy Environ. Sci. 2022, 15, 1315-1324.
[38] Luo J.; Hu B.; Debruler C.; Bi Y. J.; Zhao Y.; Yuan B.; Hu M. W.; Wu, W. D., Liu, T. L.; Joule 2019, 3, 149-163.
[39] Ruan W. Q.; Mao J. T.; Yang, S. D., Chen, Q.; J. Electrochem. Soc. 2020, 167, 100543.
[40] Long Y.; Xu Z.; Wang G.; Xu H.; Yang M.; Ding M.; Yuan D.; Yan C.; Sun Q.; Liu, M., Jia C.; iScience 2021, 24, 103157.
[41] Li X.; Gao P. Y.; Lai Y. Y.; Bazak J. D.; Hollas A.; Lin H. Y.; Murugesan V.; Zhang S. Y.; Cheng C. F.; Tung W. Y.; Lai Y. T.; Feng R. Z.; Wang J.; Wang C. L.; Wang, W., Zhu Y.; Nat. Energy 2021, 6, 873-881.
[42] Gao J. X.; Amini K.; George T. Y.; Jing Y.; Tsukamoto T.; Xi D. W.; Gordon, R. G., Aziz, M. J.; Adv. Energy Mater. 2022, 12, 2202444.
[43] Gao J. X.; Lee K.; Amini K.; Gordon R. G.; Betley, T. A., Aziz, M. J.; Adv. Funct. Mater. 2024, 34, 2310140.
[44] Li X.; Yao Y.; Liu C.; Jia X.; Jian J.; Guo B.; Lu S.; Qin W.; Wang, Q., Wu X.; Angew. Chem. Int. Ed. 2023, 62, e202304667.
[45] Adams G. B., Vol. US4180623, US, 1979.
[46] Esswein A. J., Goeltz J., andAmadeo D., Vol. 2014/0051003 A1, US, 2014.
[47] Gao J.; Lee K.; Amini K.; Gordon R. G.; Betley, T. A., Aziz, M. J.; Adv. Funct. Mater. 2023, 34, 2310140.
[48] Beejapur H. A.; Zhang Q.; Hu K. C.; Zhu L.; Wang, J. L., Ye, Z. B.; ACS Catal. 2019, 9, 2777-2830.
[49] Liu T. B.; Wei X. L.; Nie Z. M.; Sprenkle, V., Wang W.; Adv. Energy Mater. 2016, 6, 1501449.
[50] Hu B.; Hu M. W.; Luo, J., Liu, T. L.; Adv. Energy Mater. 2022, 12, 2102577.
[51] Prakash N.; Rajeev R.; John A.; Vijayan A.; George, L., Varghese A.; Chemistryselect 2021, 6, 7691-7710.
[52] Janoschka T.; Martin N.; Martin U.; Friebe C.; Morgenstern S.; Hiller H.; Hager, M. D., Schubert, U. S.; Nature 2015, 527, 78-81.
[53] Janoschka T.; Martin N.; Hager, M. D., Schubert, U. S.; Angew. Chem. Int. Ed. 2016, 55, 14427-14430.
[54] Winsberg J.; Stolze C.; Schwenke A.; Muench S.; Hager, M. D., Schubert, U. S.; ACS Energy Lett. 2017, 2, 411-416.
[55] Chang Z. J.; Henkensmeier, D., Chen, R. Y.; J. Power Sources 2019, 418, 11-16.
[56] Liu B.; Tang C. W.; Jiang H. R.; Jia, G. C., Zhao, T. S.; Acs Sustain. Chem. Eng. 2021, 9, 6258-6265.
[57] Hu S. Z.; Wang L. W.; Yuan X. Z.; Xiang Z. P.; Huang M. B.; Luo P.; Liu Y. F.; Fu, Z. Y., Liang, Z. X.; Energy Material Advances 2021, 2021, 9795237.
[58] Hu B.; Fan H.; Li H.; Ravivarma, M., Song J.; Adv. Funct. Mater. 2021, 31, 2102734.
[59] Pan M. G.; Gao L. Z.; Liang J. C.; Zhang P. B.; Lu S. Y.; Lu Y.; Ma, J., Jin Z.; Adv. Energy Mater. 2022, 12, 2103478.
[60] Gao M.; Salla M.; Song, Y., Wang Q.; Angew. Chem. Int. Ed. 2022, 61, e202208223.
[61] Fan H.; Hu B.; Li H.; Ravivarma M.; Feng, Y., Song J.; Angew. Chem. Int. Ed. 2022, 61, e202115908.
[62] Lv X.-L.; Sullivan P. T.; Li W.; Fu H.-C.; Jacobs R.; Chen C.-J.; Morgan D.; Jin, S., Feng D.; Nat. Energy 2023, 8, 1109-1118.
[63] Tang G.; Wu W.; Liu Y.; Peng K.; Zuo P.; Yang, Z., Xu T.; Nat Commun 2025, 16, 47.
[64] Xu T. H.; Liu Y. F.; Yuan X. Z.; Huang M. B.; Xiang Z. P.; Wan K.; Fu, Z. Y., Liang, Z. X.; J. Power Sources 2025, 635, 236529.
[65] Wang L. W.; Huang M. B.; Wan K.; Fu Z. Y.; Xiang, Z. P., Liang, Z. X.; Adv. Funct. Mater. 2024, 34, 2310620.
[66] Yang B.;Hoober-Burkhardt, L.; Krishnamoorthy, S.; Murali, A.; Prakash, G. K. S., Narayanan, S. R.;J. Electrochem. Soc. 2016, 163, A1442-A1449.
[67] Park M.; Beh E. S.; Fell E. M.; Jing Y.; Kerr E. F.; De Porcellinis, D.; Goulet, M. A.; Ryu, J.; Wong, A. A.; Gordon, R. G.; Cho, J., Aziz, M. J.;Adv. Energy Mater. 2019, 9, 1900694.
[68] Zhang C.; Niu Z.; Peng S.; Ding Y.; Zhang L.; Guo X.; Zhao, Y., Yu G.; Adv. Mater. 2019, 31, e1901052.
[69] Wang X. W.; Tang, W., Loh, K. P.; ACS Appl. Energy Mater. 2021, 4, 3612-3621.
[70] Li L.; Su Y.; Ji, Y., Wang P.; J. Am. Chem. Soc. 2023, 145, 5778-5785.
[71] Zhang M. Q.; Li T. Y.; Liu X. H.; Zhang, C. K., Li, X. F.; Adv. Funct. Mater. 2024, 34, 2312608.
[72] Pang S.; Li L.; Ji, Y., Wang P.; Angew. Chem. Int. Ed. 2024, 63, e202410226.
[73] Ge G.; Mu C.; Wang Y.; Zhang, C., Li X.; J. Am. Chem. Soc. 2025, 147, 4790-4799.
[74] Chen H.; Chen Y.; Song M.; Zhou X.; Huang M.; Shen X.; Ren J.; Ji C.; Yao S.; Chen L.; Liu, B., Zhao T.; Future Batteries 2025, 5, 100050.
[75] Hoober-Burkhardt, L.; Krishnamoorthy, S.; Yang, B.; Murali, A.; Nirmalchandar, A.; Prakash, G. K. S., Narayanan, S. R.;J. Electrochem. Soc. 2017, 164, A600-A607.
[76] Zhang Y.; Li F.; Li T.; Zhang M.; Yuan Z.; Hou G.; Fu J.; Zhang, C., Li X.; Energy Environ. Sci. 2023, 16, 231-240.
文章导航

/