研究论文

硝化甘油缓慢分解机理的密度泛函理论研究

  • 成守飞 ,
  • 李婧 ,
  • 凌琳 ,
  • 李玉学 ,
  • 吕龙
展开
  • a上海理工大学材料与化学学院 上海 200093;
    b中国科学院上海有机化学研究所 先进氟氮材料重点实验室(中国科学院) 上海 200032;
    c中国兵器工业火炸药工程与安全技术研究院 北京100053

收稿日期: 2025-03-14

  网络出版日期: 2025-04-24

基金资助

国家自然科学基金(No. 22175197)和中国科学院战略性先导科技专项(No. XDB0590000)

Density Functional Theory Research on Decomposition Mechanisms of Nitroglycerin

  • Cheng Shoufei ,
  • Li Jing ,
  • Ling Lin ,
  • Li Yuxue ,
  • LuLong
Expand
  • aSchool of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China;
    bKey Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032,China;
    cInstitute of Safety Technology Research, Explosive Engineering and Safety Technology, Research Institute of Ordnance Industry, Beijing 100053, China

Received date: 2025-03-14

  Online published: 2025-04-24

Supported by

Natural Science Foundation of China (Grant No. 22175197) and the Strategic Priority Research Program of the Chinese Academy

摘要

我们采用M06-2X/6-311+G**方法系统地研究了硝化甘油的分解机理,包括单分子热分解、无催化水解、酸性杂质(HNO3)催化水解以及金属盐/碱杂质(Zn²⁺/Mg²⁺阳离子与OH⁻/NO₃⁻/Cl⁻阴离子的组合)参与的分解反应. 此前的理论研究多集中于硝化甘油的单分子分解路径,而且没有考虑杂质的影响. 我们发现,在酸性杂质存在的条件下,酸催化水解的能垒为28.1 kcal/mol, 比单分子分解的O─NO2均裂能垒降低了5.8 kcal/mol, 是更合理的室温下缓慢分解的机理。而且水解反应不断释放出HNO3,使分解速度不断加快。中强碱Mg(OH)₂和硝化甘油的反应能垒仅为21.3 kcal/mol,反应速度较快. 虽然该反应是当量反应,但碱作为少量杂质存在时,也可能触发酸催化分解反应. 我们认为,酸催化机理可能最接近硝化甘油常温下缓慢分解的真实机理.

本文引用格式

成守飞 , 李婧 , 凌琳 , 李玉学 , 吕龙 . 硝化甘油缓慢分解机理的密度泛函理论研究[J]. 化学学报, 0 : 3 -3 . DOI: 10.6023/A25030081

Abstract

M06-2X/6-311+G** method has been used to systematically study the decomposition mechanism of nitroglycerin (NG), including unimolecular thermal decomposition, non-catalytic hydrolysis, HNO3 catalyzed hydrolysis, and decomposition involving metal salt/base impurities (combinations of Zn²⁺/Mg²⁺ cations with OH⁻/NO₃⁻/Cl⁻ anions). Consistent with previous reports, the homolytic cleavage of the O─NO2 to generate ·NO2 free radicals was identified as the optimal initial pathway in unimolecular decomposition. In the presence of acidic impurities, several reaction modes were explored. The optimal pathway involves proton-activated heterolytic cleavage of the O─NO2 bond in the nitrate ester group, releasing the nitronium ion (NO2⁺), which subsequently reacts with water to form nitric acid. The energy barrier for acid-catalyzed hydrolysis was calculated as 28.1 kcal/mol, 5.8 kcal/mol lower than the O─NO2 homolysis barrier in unimolecular decomposition, making it a more plausible mechanism for the slow room-temperature decomposition. Notably, the continuous release of HNO3 during hydrolysis creates an autocatalytic acceleration effect. For reactions of Zn(OH)₂ and moderately strong base Mg(OH)₂ with NG, the energy barriers were 25.3 kcal/mol and 21.3 kcal/mol, respectively. In this reaction mode, there is a cooperation effect of Lewis acid activation and the direct attack by anionic ligands on the nitrate ester, enabling relatively rapid decomposition. Although stoichiometric in nature, the generated nitric acid intermediates exhibit higher collision probabilities with NG molecules than with alkaline species for neutralization, potentially triggering acid-catalyzed decomposition. Once initiated, this acid-catalyzed process becomes self-accelerating. Zn²⁺ and Mg²⁺ nitrates/chlorides showed limited catalytic activity. We conclude that the acid-catalyzed mechanism most likely represents the true pathway for NG's gradual decomposition at ambient temperatures. Previous theoretical studies have predominantly focused on the unimolecular decomposition pathways of nitroglycerin and neglected the influence of impurities, failing to adequately account for the observed slow decomposition at ambient temperatures. Our research provides valuable references on the study of nitroglycerin.

参考文献

[1] Naoúm P. P.Nitroglycerine and nitroglycerine explosives. Williams & Wilkins, 1928.
[2] Urbanski T.Chemistry and Technology of Propellants and Explosives II. Translated by Niu, B. Y. and Chen, S. L. National Defense Industry Press, 1976 (in Chinese).
(乌尔班斯基著, 牛秉彝陈绍亮译. 火炸药的化学与工艺学II. 国防工业出版社, 1976.)
[3] Matthias T.Chemistry of High Energy Materials. Translated by Zhang, J. G. and Qin, J. Beijing Institute of Technology Press, 2016 (in Chinese).
(托马斯马蒂亚斯著,张建国秦涧译. 高能材料化学. 北京理工大学出版社, 2016.)
[4] Fante K.Alfred Nobel: A Biography. Translated by Wang, K. World Affairs Press. World Affairs Press, 2014 (in Chinese).
(肯尼范特著,王康译. 诺贝尔全传. 世界知识出版社, 2014.)
[5] Luo Y. J.; Sun S. X.High-Energy Solid Propellants. BIT Press, 2023 (in Chinese).
(罗云军, 孙世雄. 高能固体推进剂.北京理工大学出版社,2023.)
[6] Singh H.; Shekhar H.Solid rocket propellants: science and technology challenges. Royal Society of Chemistry, 2016.
[7] Wang Z. J.; Bo Y. Y.Binggong Safety Tech. 1996, 1, 37 (in Chinese).
(王振江, 薄月英. 兵工安全技术, 1996, 1, 37.)
[8] Zhang Y. C.; Jang Y. L.Industrial Safety & Dust Cont. 1990, 6, 37 (in Chinese).
(张彦才, 江业梁. 工业安全与防尘, 1990, 6, 37.)
[9] Chu S. H.Wodern Weaponry Tech. 1983, 6, 42 (in Chinese).
(储绍华. 现代兵器, 1983, 6, 42.)
[10] 张国顺, 王泽溥. 火炸药及其制品燃烧爆炸事故机器预防措施,兵器工业出版社, 北京, 2009.
[11] Yang G.; Peng S.;Chi X. H.Solid Rocket Technol. 2009, 32, 650 (in Chinese).
(杨根, 彭松, 池旭辉. 固体火箭技术, 2009, 32, 650.)
[12] Sun Y.; Ren H.; Jiao Q. J. Therm. Anal. 2018, 131,101.
[13] He B.; Lu X. M.; Meng Z. H.J. Ordnance Equip. Eng. 2022, 43, 108 (in Chinese)
(何彬, 卢先明, 孟子晖. 兵器装备工程学报, 2022, 43, 108.)
[14] Caire‐Maurisier, M.; Tranchant, J. Prop. Exp. Pyr. Tech. 1979, 4, 67.
[15] Yao Z. Y.; Luo B. H.J. North Univ. China, Nat. Sci. Ed. 1989, 2, 42 (in Chinese).
(姚子云, 罗秉和. 中北大学学报:自然科学版, 1989, 2, 42.)
[16] Roos B. D.; Brill T. B. Comb. Flame Tech. 2002, 128, 181.
[17] Hiyoshi R. I.; Brill, T. B. Propellants, Explos.,Pyrotech. 2002, 27, 23.
[18] Yan Q. L.; Künzel M.; Zeman S.; Svoboda R.; Bartošková M. Thermochim. Acta, 2013, 566, 137.
[19] Pei H. C.; Wu W. E.; Fu X.Solid Rocket Technol. 2016, 39, 538 (in Chinese).
(裴海潮, 吴婉娥, 付潇. 固体火箭技术, 2016, 39, 538.)
[20] Yan Q. L.; Zhu W. H.; Pang A. M.; Chi X. H.; Du X. J.; Xiao H. M.J. Mol. Model. 2013, 19, 1617.
[21] Jensen T. L.; Moxnes J. F.; Unneberg E.; Dullum O. Prop. Exp. Pyr. Tech. 2014, 39, 830.
[22] Pei L. G.; Dong K. H.; Tang Y. H. Chin. J. Energ.Mater. 2017, 25, 804 (in Chinese).
(裴立冠, 董可海, 唐岩辉. 含能材料, 2017, 25, 804.)
[23] Pei L. G.; Dong K. H.; Tang Y. H.; Zhang B.; Yu C.; Li W. Z.J. Mol. Model. 2017, 23, 269.
[24] Ding C.; Wu W. E.; Pei H. C.Chem. Propellants & Polymeric Mater. 2017, 15, 4 (in Chinses).
(丁超, 吴婉娥, 裴海潮. 化学推进剂与高分子材料, 2017, 15, 4.)
[25] Zeng T.; Yang R. J.; Li J. M.; Tang W. Q.; Li D. H. Combust. Sci.& Tech. 2019, 193, 407.
[26] Glorian J.; Ehrhardt J.; Baschung, B. Combust. Sci. & Tech. 2022, 196, 406.
[27] Niu S. Y.; Wu X. Q.; Hou Q. F.; Luo G. D.; Qu W. G.; Zhao F. Q.; Wang G. M.; Zhang F. J. Phys. Chem. A. 2023, 127, 1283.
[28] Liu Z. R.Thermal Analysis of Energetic Materials, National Defense Industry Press, Beijing, 2008 (in Chenese).
(刘子茹,含能材料热分析,国防工业出版社, 北京, 2008.)
[29] Liu Y.; Liu Z. R.; Qiu G.; Yin C. M. Chinese Journal of Explosives & Propellants, 2001, 03, 26(in Chenese).
(刘艳, 刘子如, 邱刚,阴翠梅. 火炸药学报,2001, 03, 26)
[30] Yu R. L.Comprehensive hand book of chemical bond energies, CRC press, 2007.
[31] An J. C.Nitroglycerin. Series of Propellants and Explosives, 1974.
(安晋川. 硝化甘油. 火炸药丛书, 1974.)
[32] Fang W. W.; Xia Z. Y.; Wu C. Y.Nitroglycerin. Series of Data on Safety Technology Accidents of Conventional Ordnance Industry, National Defense Industry Press, 1984 (in Chinese).
(方维吾, 夏正寅, 武超宇. 硝化甘油. 常规兵器工业安全技术事故资料丛书. 国防工业出版社, 1984.)
[33] Qu, K. S. Sys. Eng.- Theory & Prac. 1996, 16, 82.
(曲开社. 系统工程理论与实践, 1996, 16, 82.)
[34] Aburawi S.; Curry S. H.; Whelpton R. Int.J. Pharm. 1984, 22, 327.
[35] See supporting information.
[36] Ling L.; Wang J.; Li J.; Li Y. X.; Lu L. Chin.J. Org. Chem. 2023, 43, 285 (in Chinese).
(凌琳, 王健, 李婧, 李玉学, 吕龙, 有机化学, 2023, 43, 285.)
[37] An, D. JA.Lange's Handbook of Chemistry. 1991 (in Chinese).
(迪安JA. 兰氏化学手册. 1991.)
[38] Pearson R. G.J. Am. Chem. Soc. 1963, 22, 3533.
[39] Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery Jr.,J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.
[40] Becke A. D.J. Phys. Chem. 1993, 98: 5648.
[41] Zhao Y.; Truhlar D. G. Theor. Chem. Acc. 2008, 120, 215.
[42] Marenich A. V.; Cramer C. J.; Truhlar D. G.J. Phys. Chem. B, 2009, 113, 6378.
[43] Fukui, K. Acc. Chem. Res. 1981, 14, 363.
[44] Gräfenstein J.; Hjerpe A. M.; Kraka E.; Cremer D. J. Phys. Chem. A. 2000, 8, 1748.
[45] Yao Z. K.; Yu Z. X.J. Am. Chem. Soc. 2011, 28, 10864.
[46] Yang J.; Ling L.; Li Y. X.; Lu L. Actachim. Sinica 2023, 81, 328 (in Chinese).
(杨洁, 凌琳, 李玉学, 吕龙, 化学学报, 2023, 81, 328.)
[47] Cui Y. K.; Cheng S. F.; Ling L.; Li Y. X.; Lu L. Actachim. Sinica 2024, 4, 377 (in Chinese).
(崔勇康, 成守飞, 凌琳, 李玉学, 吕龙. 化学学报, 2024, 4, 377.)
文章导航

/