研究通讯

Mn(0)催化酮的不对称氢化反应

  • 李斌 ,
  • 张静枫 ,
  • 聂慧芳 ,
  • 卢泽星 ,
  • 杨贵东 ,
  • 张生勇
展开
  • a西安交通大学,化学工程与技术学院,陕西 西安 710100;
    b空军军医大学,药学院,陕西 西安 710032

收稿日期: 2025-03-25

  网络出版日期: 2025-04-27

基金资助

中国自然科学基金会(22108298).

Mn(0) catalyzed the asymmetric hydrogenation of ketones

  • Li Bin ,
  • Zhang Jingfeng ,
  • Nie Huifang ,
  • Lu Zexing ,
  • Yang Guidong ,
  • Zhang Shengyong
Expand
  • aSchool of Chemical Engineering and Technology, Xi'an JiaoTong University, Xi'an 710100;
    bSchool of Pharmacy, Air Force Medical University, Xi'an 710032

Received date: 2025-03-25

  Online published: 2025-04-27

Supported by

National Natural Science Foundation of China (22108298)

摘要

锰催化酮的不对称氢化自2017年以来取得了快速的发展,但所用催化剂都是基于五羰基溴化锰的一价锰催化剂,更具经济性、低价态的零价锰催化剂却鲜有报道。本工作报道了一类新型二茂铁骨架四齿配体的设计合成,并将其成功应用于Mn(0)催化简单酮的不对称氢化反应中。新型配体与Mn2(CO)10原位络合制备的手性催化剂能在温和条件下实现不同位阻/电性效应基团取代芳香酮的不对称氢化,不仅分离产率高(90%~96% yield),而且对映选择性良好(45%~90% ee),显示出该催化体系具有良好的底物普适性。本研究报道的零价锰催化体系为手性醇的催化不对称氢化合成提供了一种新型催化剂选项。

本文引用格式

李斌 , 张静枫 , 聂慧芳 , 卢泽星 , 杨贵东 , 张生勇 . Mn(0)催化酮的不对称氢化反应[J]. 化学学报, 0 : 1 -1 . DOI: 10.6023/A25030092

Abstract

The field of manganese-catalyzed asymmetric hydrogenation of ketones has witnessed significant advancements since 2017. However, the catalysts employed have predominantly been monovalent manganese catalysts based on Mn(CO)5Br. In contrast, there have been few reports on the use of more economically viable zero-valent manganese catalysts derived from Mn2(CO)10. In light of this, we designed and synthesized a novel class of tetradentate PNNN ligands, which were subsequently applied to the Mn(0) catalyzed asymmetric hydrogenation of simple ketones. Mn2(CO)10 was employed for the first time as a metal precursor in the manganese-catalyzed asymmetric hydrogenation of ketones, offering a new Mn(0) catalytic system for the synthesis of chiral alcohols and their intermediates. After a systematic optimization of reaction conditions which focused on ligand, solvent, base, and additive parameters, the optimal reaction conditions were determined as follows: the chiral catalyst (S/C=100/1) was formed in situ by combining of ligand 6d and of Mn2(CO)10 in ethanol at room temperature, the reaction proceeded under a hydrogen pressure of 3.5 MPa at a temperature of 35 °C, with ethanol as the solvent, KOtBu as the base, and hexafluoroisopropanol (HFIP) as an additive, over a period of 24 hours. Under mild conditions, a substrate scope investigation was conducted using 25 different ketones as substrates to evaluate the generality of this catalytic system. The results demonstrated that the target chiral alcohols were obtained with great yields (90%~96% yield), along with high enantioselectivities (up to 90% ee). This catalytic system exhibited excellent substrate generality, highlighting its broad applicability for the asymmetric transformation of diverse ketones. This research achievement presents the first example of a Mn(0)-based catalytic system for manganese catalyzed asymmetric hydrogenation, it is anticipated that this work will inspire chemists to develop more economical and environmentally friendly catalytic systems, give rise to the research on the mechanism of Mn(0)-catalyzed asymmetric hydrogenation, thereby advancing the field of sustainable asymmetric synthesis.

参考文献

[1].(a) A. C. Flick, C. A. Leverett, H. X. Ding, E. McInturff, S. J. Fink, C. J. Helal, J. C. DeForest, P. D. Morse, S. Mahapatra and C. J. O'Donnell, J. Med. Chem., 2020, 63, 10652-10704;
(b) J.-H. Kweon, H. Shin, M. K. Lee, S. A. Lee, P. Singh, K. Moon and I. S. Kim, Org. Process Res.Dev., 2024, 28, 1159-1169.
[2].(a) Xie, J.-H., Liu, X.-Y., Xie, J.-B., Wang, L.-X. and Zhou, Q.-L., Angew. Chem. Int. Ed., 2011, 50, 7329-7332;
(b) Xie, J.-H., Liu, X.-Y., Yang, X.-H., Xie, J.-B., Wang, L.-X. and Zhou, Q.-L., Angew. Chem. Int. Ed., 2012, 51, 201-203;
(c)Xie, J.-H., Zhou, Q.-L., Acta Chim. Sinica, 2012, 70, 1427-1438 (in chinese).
(周其林. 谢建华, 化学学报, 2012, 70, 1427-1438);
(d) Xie, J. H., Bao, D. H. and Zhou, Q. L., SYNTHESIS-STUTTGART, 2015, 47, 460-471;
(e) Wu, W.-L., Liu, S.-D., Duan, M., Tan, X.-F., Chen, C.-Y., Xie, Y., Lan, Y., Dong, X.-Q. and Zhang, X.-M, Org. Lett., 2016, 18, 2938-2941;
(f) Yin, C.-C., Dong, X.-Q. and Zhang, X.-M., Adv. Syn. Catal., 2018, 360, 4319-4324;
(g) Lin, X., Guan, F.-F., Wen, J.-L., Shao, P.-L., Zhang, X.-M., Prog. Chem., 2020, 32, 1680-1696 (in chinese).
(林鑫, 管凡夫, 温佳琳, 邵攀霖,张绪穆, 化学进展, 2020, 32, 1680-1696);
(h) Wang, H., Wen, J.-L. and Zhang, X.-M., Chem. Rev., 2021, 121, 7530-7567.
[3]. R. Noyori and T. Ohkuma, Angew. Chem. Int. Ed., 2001, 40, 40-73.
[4]. Yin C.-C., Jiang, Y.-F., Huang, F., Xu, C.-Q., Pan, Y.-M., Gao, S., Chen, G.-Q., Ding, X.-B., Bai, S.-T., Lang, Q.-W., Li, J. and Zhang, X.-M., Nat. Comm., 2023, 14, 3718.
[5]. (a) M. R. Friedfeld, M. Shevlin, J. M. Hoyt, S. W. Krska, M. T. Tudge and P. J. Chirik, Science, 2013, 342, 1076-1080;
(b) Z. Zhang, N. A. Butt, M. Zhou, D. Liu and Zhang W.-B., Chin. J. Chem., 2018, 36, 443-454;
(c) L. Alig, M. Fritz and S. Schneider, Chem. Rev., 2019, 119, 2681-2751;
(d) Liu, Y-H., Dong, X-Q., Zhang, X-M., Chin. J. Org. Chem., 2020, 40, 1096-1104 (in chinese)
(刘元华,董秀琴,张绪穆, 有机化学, 2020, 40, 1096-1104);
(e) Li, L.-J., He, Y., Yang, Y., Guo, J., Lu, Z., Wang, C., Zhu, S. and Zhu, S.-F., CCS Chem., 2023, 0, 1-106;
(f) C-G, Liu, Q. Liu, Chin. J. Org. Chem. 2022, 42, 3213-3220. (in chinese)
(刘晨光,刘强,有机化学, 2022, 42, 3213-3220);
(g) Cai, X.-H., Chen, J.-Z., Zhang, W.-B., Acta Chim. Sinica. 2023, 81, 646-656. (in chinese)
(蔡新红,陈建中,张万斌,化学学报, 2023, 81, 646-656);
(h) Chen, J.-Z., Wei, H.-L., Gridnev, I. D and ZhangW.-B. Angew. Chem. Int. Ed. 2025, e202425589;
(i) Hu, X.-H., Zheng, K.-K., Yin, H., Wang, Y.-H., Hu, X.-P. etal. Org. Lett. 2025, DOI: 10.1021/acs.orglett.5c00560.
[6]. (a) H. Jayaprakash, Dalton Transactions, 2021, 50, 14115-14119;
(b) Li, Y.-D., Li, Y., Xia, C.-G., Li. Y.-H., J Mol. Catal., 2022, 36, 71-80 (in chinese)
(李玉东, 李莹, 夏春谷,李跃辉, 分子催化, 2022, 36, 71-80);
(c) C. L. Oates, A. S. Goodfellow, M. Bühl and M. L. Clarke, Green Chem., 2023, 25, 3864-3868;
(d) D. Fu, Z. Wang, Liu, Q., S. J. Prettyman, G. A. Solan and Sun W.-H., ChemCatChem, 2024, 16, e202301567;
(e) Wang, M., Liu, S., Liu, H., Wang, Y., Lan, Y. and Liu, Q., Nature, 2024;
(f) Zhang, X,-X., Wu ,W.-L, Ren, H.-Y., Zhang, F., Mo, W.-Z., Lu, Z.-Q., Acta Chim. Sinica, 2024, 82, 736-741 (in chinese).
(江杏杏,武卫龙,任慧莹,张凤,莫文枝,卢志强, 化学学报, 2024, 82, 736-741).
[7]. M. B. Widegren, G. J. Harkness, A. M. Z. Slawin, D. B. Cordes and M. L. Clarke, Angew. Chem. Int. Ed., 2017, 56, 5825-5828.
[8]. M. Garbe, K. Junge, S. Walker, Z. Wei, H. Jiao, A. Spannenberg, S. Bachmann, M. Scalone and M. Beller, Angew. Chem. Int. Ed., 2017, 56, 11237-11241.
[9]. Zhang, L.-L., Tang, Y.-T., Han, Z.-B. and Ding, K.-L., Angew. Chem. Int. Ed., 2019, 58, 4973-4977.
[10]. Zeng, L. Y., Yang, H.- X., Zhao, M.-L., Wen J.-L., Tucker J. H. R.and Zhang, X.-M., Acs. Catal., 2020, 10, 13794-13799.
[11]. Ling, F., Chen, J.-C., Nian, S.-F., Hou, H.-C., Yi, X., Wu, F.-F., Xu, M. and Zhong, W.-H., SYNLETT, 2020, 31, 285-289.
[12]. Wang, Z., Zhao, X.-H., Huang, A., Yang, Z.-H., Cheng, Y.-Q., Chen, J.-C., Ling, F. and Zhong, W.-H., Tetrahedron Lett., 2021, 82, 153389.
[13]. He, J.-Y., Mao W.-H., Lin, J., Wu, Y.-Z., Chen, L.X., Yang, P.-T, Song, D.-G., Zhu P.-X., Zhong, W.-H. and Ling, F., Org. Chem. Front., 2023, 10, 3321-3327.
[14]. Ling, F., Hou, H.-C., Chen, J.-C., Nian S.-F., Yi, X., Wang, Z., Song, D.-G. and Zhong, W.-H., Org. Lett., 2019, 21, 3937-3941.
[15]. Yang, J.-T., Yao L.-J., Wang, Z., Zuo, Z., Liu S.-Y., Gao, P.-X., Han M.-Y., Liu, Q.-B., G. A. Solan and Sun, W.-H., J. Catal., 2023, 418, 40-50.
[16]. C. Arsenault, P. Bougeard, B. G. Sayer, S. Yeroushalmi and M. J. McGlinchey, J. Organomet. Chem., 1984, 265, 283-290.
[17]. Li W.-B., Zhang J.-L. Acc. Chem. Res. 2024, 57, 489-513;
[18].a Chen W.-P., Mbafor, W., Roberts, S. M. and Whittall, J., J. Am. Chem. Soc., 2006, 128, 3922-3923; b Nie, H.-F., Yao, L., Li, B., Zhang, S.-Y and Chen W.-P., Organomet., 2014, 33, 2109-2114.
[19]. Bian, J., D. Blakemore, J. S. Warmus, J. Sun, M. Corbett, C. R. Rose and B. M. Bechle, Org. Lett., 2013, 15, 562-565.
文章导航

/