综述

机械力环境化学:污染物转化机理与应用展望

  • Zhang ,
  • Yuqi ,
  • Liu ,
  • Jinze ,
  • Xue ,
  • Dongxu ,
  • Shi ,
  • Yuxiang ,
  • Zhang ,
  • Wei-xian
展开
  • 同济大学环境科学与工程学院 污染控制与资源化研究国家重点实验室 上海 200092
张聿棋,同济大学环境科学与工程学院2023级硕士生,研究方向为零价铁回收水中重金属元素; 刘金泽,同济大学环境科学与工程学院2024级硕士生,研究方向为机械力化学制备零价铁环境功能材料; 薛东旭,同济大学环境科学与工程学院2024级直博生,研究方向为电催化硝酸盐还原; 史昱翔,同济大学环境科学与工程学院2020级直博生,研究方向为机械力化学在水中金属回收方面的机制和应用; 已发表SCI论文 7篇; 张伟贤,教授、博士生导师,国家特聘专家,自2011年起担任污染控制与资源化研究国家重点实验室主任; 1984年毕业于同济大学,1996年获得美国约翰·霍普金斯大学(The Johns Hopkins University)环境工程博士学位,曾任美国里海大学(Lehigh University)教授; 主持过国家自然科学基金海外及港澳学者合作研究基金及多项国家自然科学基金项目,长期致力于环境中重金属及持久性有机污染物的基础与应用研究,是环境纳米技术的先驱之一,也是纳米零价铁技术的创始研究者; 在纳米零价铁的合成、表征、污染物反应机理研究及其在地下水修复和废水处理中的应用方面,发表了一系列经典论文

收稿日期: 2025-03-12

  网络出版日期: 2025-05-14

基金资助

国家重点研发计划(2022YFC3702102)和广东省发展计划(No. 2020B0202080001)资助.

Mechanochemistry : Pollutant Transformation and Environmental Applications

  • 张聿棋 ,
  • 刘金泽 ,
  • 薛东旭 ,
  • 史昱翔 ,
  • 张伟贤
Expand
  • State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092

Received date: 2025-03-12

  Online published: 2025-05-14

Supported by

National Key Research and Development Program of China (2022YFC3702102) and Development Program of Guangdong Province (No. 2020B0202080001).

摘要

机械化学(Mechanochemistry, MC)是化学领域的一个新兴的快速发展学科,其核心在于利用机械能驱动分子及原子排列的化学转化过程。通过调控机械能诱导化学键的结合与重组,机械化学能够构建独特的反应路径并生成传统化学方法难以实现的产物。这种高强度能量输入的特性使其在处理难降解环境污染物方面展现出显著优势。以典型污染物全氟辛烷磺酸(PFOS)的机械化学降解为例,该方法无需添加化学试剂即可断裂C-F键,实现近乎完全的脱氟,为持久性污染物的绿色脱毒提供了新途径。近期关于有机污染物压电催化降解的研究表明,该技术在多次循环实验中降解效率始终维持在97%以上,充分彰显了其技术稳定性及规模化环境修复应用的潜力。在材料合成领域,机械化学技术成功制备了单原子催化剂(SACs)、纳米零价铁(nZVI)和金属有机框架材料(MOFs)等新型功能材料。其作用机制主要涉及机械活化诱导的物料活化、结构缺陷的定向引入以及反应动力学的显著提升。早期研究已将机械化学工艺成功应用于固体废弃物处理及有毒重金属回收,例如在退役锂离子电池正极材料选择性提取方面,通过机械化学处理使金属分离系数从56.9提升至1475,极大提高了资源回收效率。当前机械化学研究正处在快速发展阶段,未来需重点深化对水处理过程和危险固废处置等关键领域的机理认知。通过系统研究机械化学过程中能量-物质-结构的协同作用机制,有望突破传统环境治理技术中存在的处理成本高、化学药剂毒性大及次生危废产生等瓶颈问题,为环境科学与工程领域提供新质生产力。

本文引用格式

Zhang , Yuqi , Liu , Jinze , Xue , Dongxu , Shi , Yuxiang , Zhang , Wei-xian . 机械力环境化学:污染物转化机理与应用展望[J]. 化学学报, 0 : 0 . DOI: 10.6023/A25030074

Abstract

Mechanochemistry (MC) is a subfield of chemistry that focuses on chemical transformation driven by mechanical energy. By manipulating mechanical energy to induce the combination and rearrangement of chemical bonds, MC stipulates unique reaction pathways and products that are not achievable by conventional chemical reactions. The high-intensity energy input is especially advantageous for transformation and remediation of persistent environmental pollutants. One prominent example is the mechanochemical degradation of perfluorooctane sulfonate (PFOS), a harmful environmental contaminant. By breaking the C-F bonds without the need for additional chemical reagents, mechanochemical methods can achieve nearly complete defluorination, offering a green approach to detoxify persistent pollutants. Recent research on piezo-catalytic degradation of organic pollutants has demonstrated that the method consistently maintains degradation efficiencies greater than 97% across five cycles. This highlights its robustness and potential for widespread applications in environmental remediation. MC has also contributed to the synthesis of novel materials, including single-atom catalysts (SACs), nanoscale zero-valent iron (nZVI), and metal-organic frameworks (MOFs). The fundamentals of MC include mechanical activation, introduction of structural defects, and enhancement of reaction kinetics. Early studies have successfully applied mechanochemical processes to solid waste treatment and the recovery of toxic heavy metals, such as the selective extraction of valuable metals from spent lithium-ion battery cathodes, which led to an increase in the separation factor from 56.9 to 1,475. As the field continues to evolve, future research is needed to deepen our understanding on mechanochemistry, particularly in the areas of water treatment and hazardous solid waste management. This will help address challenges associated with high costs, toxic chemical reagents, and byproducts of hazardous wastes, which are enduring challenges in environmental science and technology.

参考文献

[1] James,S.L.;Adams,C.J.;Bolm,C.;Braga,D.;Collier,P.;Friščić,T.;Grepioni,F.;Harris,K.D.M.;Hyett,G.;Jones,W.;Krebs,A.;Mack,J.;Maini,L.;Orpen,A.G.;
Parkin,I.P.; Shearouse,W.C.;Steed,J.W.;Waddell,D. C. Chem. Soc. Rev. 2012, 41(1), 413-447.
[2] TAKACS, L. Chem. Soc. Rev. 2013, 42(18), 7649-7659.
[3] Šepelák V.; Düvel A.; Wilkening M.;Becker K.; Heitjans P. Chem. Soc. Rev. 2013, 42(18), 7507-7520.
[4] Gomollón-Bel, F. Chem. Int. 2019, 41(2), 12-17.
[5] O’Neill, R. T.; Boulatov, R. Nat. Rev. Chem. 2021, 5(3), 148-167.
[6] Zholdassov Y. S.; Yuan L.; Garcia S. R.; et al.Science. 2023, 380(6649), 1053-1058.
[7] Wang Z.; Berbille A.; Feng Y.-W.; Li S.-T.; Zhu L.-P.; Tang W. Nat.Commun. 2022, 13(1), 130.
[8] Trang,B.; Li,Y.-L.; Xue X.-S.; Ateia, M.; Houk, K. N.;Dichtel, W. R. Science. 2022, 377(6608), 839.
[9] Shahid M. K.; Kashif A.; Fuwad A.; Choi Y. Coord. Chem. Rev. 2021, 442.
[10] Gobindlal K.; Zujovic Z.; Jaine J.; Weber C. C.;Sperry J. Environ. Sci. Technol. 2023, 57(1), 277-85.
[11] Tan Q.; Li J. Environ. Sci. Technol. 2015, 49(10), 5849-5861.
[12] Amrute A. P.;De Bellis, J.; Felderhoff, M.; Schüth, F. Chem.-Eur. J. 2021, 27(23), 6819-6847.
[13] Hu Y.; Li B.; Yu C.; Fang H.; Li Z. Mater.Today. 2023, 63, 288-312.
[14] Li P.; Cheng F.-F.; Xiong W.-W.; Zhang Q. Inorg. Chem. Front. 2018, 5(11), 2693-2708.
[15] Yang N.; Yang S.; Ma Q.; Beltran C.; Guan Y.; Morsey M.; Brown E.; Fernando S.; Holsen T. M.; Zhang W.; Tang,Y. Environ. Sci. Technol. Lett. 2023, 10(2), 198-203.
[16] Wang M.; Liu K.; Xu Z.; Dutta S.; Valix M.; Alessi D. S.; Huang, L; Zimmerman, J. B.; Tsang D. C.W. Environ. Sci. Technol. 2023. 57(9), 3940-3950.
[17] Zhang S.; Zhang C.; Zhang X.; Ma E.Waste Manag. 2023, 161, 245-253.
[18] Yue L.; Ke K.; Amirkhosravi M.; Gray T. G.; Manas-Zloczower, I. ACS Appl. Bio Mater. 2021, 4(5), 4176-4183.
[19] Schneidermann C.; Otto P.; Leistenschneider D.; Grätz S.; Claudia Eßbach, C.; Borchardt,L. Beilstein J. Nanotechnol. 2019, 10, 1618-1627.
[20] Zhang J.; Han K.; Jiao W.; Su P.; Wang D.; Zhu J.; Zhu M.; Li L. J. Hazard. Mater. 2024, 472,134489.
[21] Mallampati S. R.; Mitoma Y.; Okuda T.; Sakita S.; Kakeda M. Environ. Chem. Lett. 2012, 10(2), 201-207.
[22] Geng X.; Zhong L.; Liu X.; Ding,X.; Huang T.; Xu Y.; Duan Y. Chem. Eng. J. 2023, 454,140264.
[23] Gong L.; Chen J.; Hu Y.; He K.; Bylaska E. J.; Trantyek P. G.; He F. Environ. Sci. Technol. 2023, 57(26), 9811-9821.
[24] Qian K.; Chen H.; Li W.; Ao Z.; Wu Y.; Guan X. Environ. Sci. Technol. 2021, 55(10), 7034-7043.
[25] Wang X.; Ding S.; Yue T.; Zhu Y.; Fang M.; Li X.; Xiao G.; Zhu Y.; Dai L.Nano Energy. 2021, 82, 105689.
[26] Liang J.; Gvilava V.; Jansen C.; Öztürk S.; Spieß A.; Lin J.; Xing X.; Sun Y.; Wang H.; Janiak C. Angew. Chem. Int. Ed. 2021, 60(28), 15365-15370.
[27] Hu P.; Liang X.; Yaseen M.; Li J.; Chen S.; Pang C.; Liao T.; Zhao Z. Chem. Eng. J. 2018, 332, 608-618.
[28] Field, J. Phys.Today. 2006, 59(5), 72-73.
[29] Baláž P.Mechanochemistry in Nanoscience and Minerals Engineerin, Springer Berlin Heidelberg, 2008, 1-102.
[30] Fink, M. Mater.Corros. 1968, 19(2), 188-189.
[31] Baláž, M. Environ.Mechanochem. 2021.
[32] Lee Y. T.; More R. M. Phys. Fluids. 1984, 27(5), 1273-1286.
[33] Takacs, L. Chem. Soc. Rev. 2013, 42(18), 7649-7659.
[34] Piao Y.; Le K. C.Continuum Mech. Thermodyn. 2022, 34(3), 763-780.
[35] Heinicke G.; Hennig H. P.Tribochemistry: Akademie-Verlag, 1984.
[36] Vladimir, V. B. Russ. Chem. Rev. 2006, 75(3), 177.
[37] Michael P.;Sheidaee Mehr, S. K.; Binder, W. H. J. Polym. Sci. A Polym. Chem. 2017, 55(23), 3893-3907.
[38] Ansari A.; Kumar M.; Singhal H.; Chakera J. A.J. Appl. Phys. 2024, 135(14),143103.
[39] Liang Y.; Xu W.; Fang J.; Liu Z.; Chen D.; Pao T.; Yu Y.; Fang, Z. Appl. Catal. B-Environ. 2021, 295, 120279.
[40] Monti M.; Perin E.; Conterosito E.; Romagnolli U.; Muscato B.; Girotto M.; Scrivani M. T.; Gianotti V. Resour. Conserv. Recycl. 2023, 188, 106691.
[41] Sanes J.; Sánchez C.; Pamies R.; Avilés M.; Bermúdez M. Materials. 2020, 13(3), 549.
[42] Karippal J. J.;Narasimha Murthy, H. N.; Rai, K. S.; Krishna, M.; Sreejith, M. J. Mater. Eng. Perform. 2010, 19(8), 1143-1149.
[43] Berkowski K. L.; Potisek S. L.; Hickenboth C. R.; Moore J. S.Macromolecules. 2005, 38(22), 8975-8980.
[44] Hickenboth C. R.; Moore J. S.; White S. R.; Nancy R. Sottos, N. R.; Jerome Baudry, J.; Scott R. Wilson, S. R. Nature. 2007, 446(7134), 423-427.
[45] Lesko T.; Colussi A. J.; Hoffmann M. R. Environ. Sci. Technol. 2006, 40(21), 6818-6823.
[46] Zheng Y.; Yu Z.; Ou H.; Asiri A. M.; Chen Y.; Wang X. Adv. Funct. Mater. 2018, 28(10),1705407.
[47] Sutkar V. S.; Gogate P. R. Chem. Eng. J. 2009,155(1-2), 26-36.
[48] Sung J.; Robb M. J.; White S. R.; Moore J.; Scottos N. R.J. Am. Chem. Soc. 2018, 140(15), 5000-5003.
[49] Naik S. S.; Lee S. J.; Theerthagiri J.; Yu Y.; Choi M. Y.J. Hazard. Mater. 2021, 418, 126269.
[50] Chen H.-C.; Li X. Chem.Ind & Eng. Pro. 2021,40(11), 6332-6346. (in Chinese).
(陈惠超,李雪,化工进展, 2021,40(11), 6332-6346.)
[51] Ardila-Fierro, K. J.; Hernandez, J. G. Chemsuschem. 2021, 14(10), 2145-2162.
[52] Guo X.; Xiang D.; Duan G.; Mou P.Waste Manag. 2009, 30(1), 4-10.
[53] Cagnetta G.; Robertson J.; Huang J.; Zhang K.; Yu G. J. Hazard. Mater. 2016, 313, 85-102.
[54] Nasser A.; Mingelgrin U. Appl. Clay Sci.2012, 67-68, 141-150.
[55] Hadas J.-E.; Ahmed N.; Julius B. A.; Mingelgrin U. Environ. Sci. Technol. 2014, 48(10), 5876-5882.
[56] Singh S.; Yenkie M. K.N. Water, Air, Soil Pollut. 2004, 156, 275-286.
[57] Rezaei R.; Mohseni M. Chem. Eng. J. 2017, 310, 457-463.
[58] Napola A.; Pizzigallo M. D.R.; Leo, P. D.; Spagnuolo, M.; Ruggiero, P. Chemosphere 2006, 65(9), 1583-1590.
[59] Zhang J.; Han K.; Jiao W.; Su P.; Wang D.; Zhu J.; Zhu M.; Li L. J. Hazard. Mater. 2024, 472, 134489.
[60] Samara M.; Nasser A.; Mingelgrin U. Chemosphere 2016, 160, 266-272.
[61] Cagnetta G.; Zhang Q.; Huang J.; Lu M.; Wang B.; Wang Y.; Deng S.; Yu G. Chem. Eng. J. 2017, 316, 1078-1090.
[62] Nasser A.; Sposito G.; Cheney M. A.Colloids Surf. A 2000, 163(2), 117-123.
[63] Cheney M. A.; Sposito G.; McGrath, A. E.; Criddle, R. S. Colloids Surf. A 1996, 107, 131-140.
[64] Nasser A.; Buchanovsky N.; Gerstl Z.; Mingelgrin U. Chemosphere 2008, 75(1), 20-27.
[65] Nasser A.; Mingelgrin U. Chemosphere 2014, 107, 175-179.
[66] Leo P. D.; Pizzigallo M. D. R.; Ancona V.; Benedetto F. D.; Mesto, E; Schingaro, E; Ventruti, G. J. Hazard. Mater.2013, 244-245(Jan.15), 303-310.
[67] Pizzigallo M. D.R.; Leo, P. D.; Ancona, V.; Spagnuolo, M.; Schingaro, E. Chemosphere 2010, 82(4), 627-634.
[68] Zhang W.; Huang J.; Xu F.; Deng S.; Zhu W.; Yu G. J. Hazard. Mater. 2011, 198, 275-281.
[69] Lu S.; Huang J.; Peng Z.; Li X.; Yan J. Chem. Eng. J.2012, 195-196, 62-68.
[70] Yu Y.; Huang J.; Zhang W.; Zhang K.; Deng S.; Yu G. Chemosphere 2013, 90(5), 1729-1735.
[71] Zhang W.; Wang H.; Jun H.; Yu M.; Wang F.; Zhou L.; Yu G. Chem. Eng. J. 2014, 239, 185-191.
[72] Ndayiragije S.; Zhang Y.; Zhou Y.; Song Z.; Wang N.; Majima T.; Zhu, L. Appl. Catal. B-Environ. 2022, 307, 121168.
[73] Zhang K.; Huang J.; Yu G.; Zhang Q.; Deng S.; Wang B. Environ. Sci. Technol. 2013, 47(12), 6471-6477.
[74] Hu A.; Cagnetta G.; Huang J.; Yu G. J. Hazard. Mater. 2018, 360, 71-81.
[75] Cagnetta G.; Huang J.; Wang B.; Deng S.; Yu G. Chem. Eng. J. 2016, 291, 30-38.
[76] Gang C.; Huang J.; Yao Y. Crit. Rev. Environ. Sci.Technol. 2018, 48(7-9), 723-771.
[77] Chen Z.; Lu S.; Tang M.; Lin X.; Qiu Q.; He H.; Yan J. Sci.Total Environ. 2019, 694, 133813.
[78] Geng X.; Zhong L.; Liu, X; Deng X.; Huang T.; Xu Y.; Duan Y. Chem. Eng. J. 2023, 454(P3), 140264.
[79] Kajdas C.; Kulczycki A.; Ozimina D. Tribol.Int. 2017, 107, 144-151.
[80] Feng Y.; Ling L.; Wang Y.; Xu Z.; Cao F.; Li H.; Bian Z. Nano Energy 2017, 40, 481-486.
[81] Yang B.; Chen B.; Guo X.; Wang L.; Xu T.; Bian J.; Yang Y.; Liu Q.; Du Y.; Lou X. J. Mater. Chem. C 2020, 8(42), 14845-14854.
[82] Qu R; Wan S,X.; Zhang, X.; Wang, X.; Xue, L.; Wang, Q.; Cheng, G.-J.; Dai, L.; Lian, Z. Angew. Chem. 2024, 136(28).
[83] Wang Z.-L.; Dong X.; Li X.-F.; Tang, W; Feng, Y; Li, S. Nat.Commun. 2024, 15(1), 757.
[84] Liang Z.; Peng G.; Hu J.; Hou H.; Cai C.; Yang X.; Chen S.; Liu L.; Liang S.; Xiao K.; Yuan S.; Zhou S.; Yang J.Waste Manag. 2022, 150, 290-300.
[85] Xie J.; Huang K.; Nie Z.; Yuan W.; Wang X.; Song Q.; Zhang X.; Zhang C.; Wang J.; Crittenden J. C. Resour. Conserv. Recycl. 2020, 168(18), 105261.
[86] Lin T.; Liang J.; Jin S.; Mu D.; Sun S.; Liu C.; Ning Y.; Song J.; Zhao L.; Dai C. Sep. Purif. Technol. 2024, 338, 126458.
[87] Liu Z.; Liu G.; Cheng L.; Gu J.; Yang J.; Yuan H.; Chen Y.; Wu Y. Sep. Purif. Technol. 2024, 335, 126174.
[88] Liu K; Wang M; Tsang D. C.W.; Liu, L; Tan, Q; Li, J. J. Hazard. Mater. 2022, 440, 129638.
[89] Che J.; Zhang W.; Xia L.; Chen J.; Wen P.; Ma B.; Wang C.ACS Sustainable Chem.Eng. 2021, 9(30), 10227-10239.
[90] Liu Z.; Lv Y.; Wang S.; Liu B.; Wenzel M.; Zhang Y.; Du H.; Weigand J. J. Sep. Purif. Technol. 2024, 347, 127484.
[91] Aydonat S.; Hergesell, A. H.; Seitzinger, C. L.; Lennarz, R.; Chang, G.; Sievers, C.; Meisner, J.; Vollmer, I.; Göstl, R. Polym. J. 2024, 56(4), 249-268.
[92] Jian H.; Huifang D.; Shouxu S. Adv. Mater. Sci. Eng. 2020, 2020, 1-12.
[93] Liu J.; Zhu H.; Fang D.; Huang X.; Zhang C.; Luo Y. J. Environ. Chem. Eng. 2023, 11(3), 110269.
[94] Kang P.; Yang S.; Bai S.; Wang Q. ACS Sustainable Chem.Eng. 2021, 9(35), 11778-11789.
[95] Tsuzuki, T. Commun.Chem. 2021, 4(1).
[96] Gao T.; Tang H.-J.; Zhang S.-Y.; Cao J.-W.; Wu Y.-N.; Chen J.; Wang Y.; Chen K.-J.J. Solid State Chem. 2021, 303, 122547.
[97] Yin Z.; Zhang Q.; Li S.; Cagnetta G.; Huang J.; Deng S.; Yu G. Sci.Total Environ. 2022, 825, 153992.
[98] Li S.; Yan W.; Zhang W.-X.Green Chem. 2009, 11(10), 1618-1626.
[99] Zhang Y.; Yang B.; Fan J.; Ma L. RSC Adv. 2016, 6(80), 76867-76873.
[100] Zou H.; Zhao J.; He F.; Zhong Z.; Huang J.; Zheng Y.; Zhang Y.; Yang Y.; Yu F.; Bashir M. A.; Gao B. J. Hazard. Mater. 2021, 413, 125252.
[101] Gao J.; Wang W.; Rondinone A. J.; He F.; Liang L. J. Hazard. Mater. 2015, 300, 443-450.
[102] Wang P.; Hu J.; Wang Y.; Liu T. J. Hazard. Mater. 2022, 435, 129050.
[103] Lu Y.; Li Z.; Li J.; Chen K.; Dong H.; Shou J.; Li Y. Chem. Eng. J. 2018, 349, 522-529.
[104] Qu J.; Li H.; Li Z.; Peng W.; Wang B.; Wang H.; Zhang G.; Hu Q.; Wang L.; Zhang Y. Environ.Res. 2024, 262, 119925.
[105] Wang P.; Hu J.; Liu T.; Han G.; Ma W.-M.; Li J. J. Clean. Prod. 2023, 385, 135513.
[106] Peng X.; Wu J.; Zhao Z.; Wang X.; Dai H.; Xu L.; Xu G.; Jian Y.; Hu F. Chem. Eng. J. 2022, 427, 130803.
[107] Du P.; Huang K.; Fan X.; Ma, j.; Hussain, N.; Wang, R.; Deng, B.; Ge, B.; Tang, H.; Zhang, R.; Lei, M.; Wu, H. Nano Res. 2022, 15(4), 3065-3072.
[108] Chen N.; Chen D.; Wei F.; Zhao S.; Luo Y. Chem. Phys. Lett. 2018, 705, 23-30.
[109] Wei F.; Ren Q.; Yu X.; Wang Y.; Chen H.; Liang Z. Environ.Res. 2024, 252, 118941.
[110] Chen D.; Feng P.-F.; Wei, F.-H. Chem. Eng. Process.Intensif. 2019, 135, 63-67.
[111] Wei F.; Zheng T.; Ren Q.; Chen H.; Peng J.; Ma Y.; Liu Z.; Liang Z.; Chen D.Green Process. Synth. 2022, 11(1), 595-603.
[112] Tanaka S.; Nagaoka T.; Yasuyoshi A.; Hasegawa Y.; Denayer J. F.M. Cryst. Growth Des. 2018, 18(1), 274-279.
[113] Hou S.; Wu Y.-N.; Feng L.; Chen W.; Wang Y.; Morlay C.; Li F.Dalton Trans. 2018, 47(7), 2222-2231.
[114] Wei F.-H.; Chen D.; Liang Z.; Zhao S.; Luo Y.Dalton Trans. 2017, 46(47), 16525-16531.
[115] Wu T. Y.; Guo N.; Teh C. Y.; Hay J. X.W. Adv. Ultrasound Technol. Environ. Remed. 2012.
[116] Gogate, P. R. Adv. Environ. Res. 2002, 6(3), 335-358.
[117] Dong Z.; Delacour C.; Carogher K. M.; Udepurkar A. P.; Kuhn S. Materials. 2020, 13(2), 344.
[118] Sutkar V. S.; Gogate P. R. Chem. Eng. J. 2009, 155(1-2), 26-36.
文章导航

/