研究论文

氧空位增强PdNi/HfO2催化剂在乙二醇电催化氧化中的活性

  • Zhang ,
  • Nana ,
  • Li ,
  • Jing
展开
  • 重庆大学 化学化工学院 重庆 401331

收稿日期: 2025-02-25

  网络出版日期: 2025-05-14

基金资助

国家重点研发计划(No. 2022YFA1504200)资助.

Oxygen Vacancies Enhance the Activity of PdNi/HfO2 Catalysts for Ethylene Glycol Electrocatalytic Oxidation

  • 张娜娜 ,
  • 李静
Expand
  • School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044

Received date: 2025-02-25

  Online published: 2025-05-14

Supported by

National Key Research and Development Program of China (No. 2022YFA1504200).

摘要

为了进一步提升直接乙二醇燃料电池的性能,开发高效的乙二醇氧化反应(EGOR)电催化剂至关重要。尽管PdNi合金纳米晶表现出优异的EGOR活性,但其性能仍难以满足燃料电池的实际应用需求。基于此,本研究提出通过构建氧空位(Ov)来增强PdNi合金电催化活性的创新策略。在氧化铪(HfO2)材料合成过程中引入镍(Ni)掺杂,成功诱导HfO2从晶相向非晶相转变,并在其内部形成高浓度氧空位。以此作为载体,负载PdNi合金纳米晶,即制备得到PdNi/HfO2-Ov催化剂。在碱性体系电化学EGOR中,PdNi/HfO2-Ov催化剂质量活性达到10.28 A mg-1Pd,较无氧空位的PdNi/HfO2及商用钯碳(PdC)催化剂分别提升2.2倍与7.56倍。XPS研究发现氧空位的引入能够调控Pd的电子结构,产生电子效应进而提升PdNi活性。通过Ni掺杂,同时调控HfO2载体晶型和氧空位缺陷,并通过氧空位调控Pd合金电子结构和本征活性的研究思路,为直接乙二醇燃料电池阳极催化剂设计提供了新策略。

本文引用格式

Zhang , Nana , Li , Jing . 氧空位增强PdNi/HfO2催化剂在乙二醇电催化氧化中的活性[J]. 化学学报, 0 : 0 . DOI: 10.6023/A25020055

Abstract

To further enhance the performance of direct ethylene glycol fuel cells, the development of highly efficient electrocatalysts for the ethylene glycol oxidation reaction (EGOR) is crucial. Although PdNi alloy nanocrystals exhibit excellent EGOR activity, their performance still falls short of the practical application requirements for fuel cells. Based on this, this study proposes an innovative strategy to enhance the electrocatalytic activity of PdNi alloys by introducing oxygen vacancies (Ov). By doping Ni into HfO2, the transformation of HfO2 from monoclinic to amorphous phases is induced, promoting the formation of high concentrations of oxygen vacancies within HfO2 and thereby regulating the electronic structure and catalytic activity of the supported PdNi alloy. It was found that at lower Ni doping levels, a monoclinic carrier Ni/c-HfO2 is obtained; at medium Ni doping levels, an amorphous carrier Ni/HfO2-Ov rich in oxygen vacancies is obtained; and at high Ni doping levels, an amorphous Ni/HfO2 without oxygen vacancies is obtained. This indicates that Ni doping can simultaneously regulate both the crystal structure and oxygen vacancy concentration of HfO2. Further introduction of a Pd2+ precursor onto the surface of the HfO2 carrier followed by simple solution reduction prepares the PdNi alloy-supported catalyst. The study revealed that in a 1 mol/L KOH + 1 mol/L EG electrolyte solution, PdNi/HfO2-Ov exhibits excellent performance for EGOR with the lowest onset potential (0.3 V), the smallest charge transfer resistance (3.28 Ω), and mass activity (MA) and specific activity (SA) reaching 10.28 A mg⁻¹Pd and 38.6 mA cm⁻², respectively. Compared to PdNi/HfO2 without oxygen vacancies and commercial Pd/C catalysts, the EGOR performance is significantly improved. X-ray photoelectron spectroscopy (XPS) analysis revealed that the introduction of oxygen vacancies facilitates charge transfer from Pd to the HfO2 carrier, thereby optimizing the electronic structure of Pd and accelerating the reaction kinetics. The research approach of regulating both the crystal structure and oxygen vacancy defects of the HfO2 carrier through Ni doping, and further regulating the electronic structure and intrinsic activity of the Pd alloy through oxygen vacancies, provides a new strategy for designing anode catalysts for direct ethylene glycol fuel cells.

参考文献

[1] Chen Y.; Pei J.; Chen , Z.; Li, A.; Ji, S.; Rong, H.; Xu, Q.; Wang, T.; Zhang, A.; Tang, H.; Zhu, J.; Han, X.; Zhuang, Z.; Zhou, G.; Wang, D. Nano Lett 2022, 22, 18.
[2] Wang H.; Jiang B.; Zhao T.-T.; Jiang K.; Yang Y.-Y.; Zhang J.; Xie Z.; Cai W.-B. ACS Catal 2017, 7, 3.
[3] Zhong Y.-T.; Hu Y.-L.; Mo H.; Wu Z.-R.; Fu X.; Zhou L.-Q.; Liu H.-Y.; Liu L.; Liu X.-G.Electrochim. Acta 2022, 408, 139935.
[4] Qi L.; Jiang J.; Sun Y.; Xie F.; Zhao Y.; Wan L.; Lü, C. Chem. Eng. J. 2023, 475, 146050.
[5] Si D.;X, B.-Y.; Chen, L.-S.; Shi, J.-L. Chem Catal. 2021, 1, 4.
[6] Lai J.; Lin F.; Tang Y.; Zhou P.; Chao Y.; Zhang Y.; Guo S. Adv.Energy Mater. 2019, 9, 8.
[7] Shi K.; Si D.; Teng X.; Chen L.-S.; Shi J.-L. Nat. Commun. 2024, 15, 2899.
[8] Yao S.-Y.; Zhang X.; Zhou W.; Gao R.; Xu, W.-Q.; Ye Y.-F.; Lin, L.-L.; Wen, X.-D.; Liu, P.; Chen, B.-B.; Crumlin, E.; Guo, J.-H.; Zuo, Z.-J.; Li, W.-A.; Xie, J.-L.; Lu, L.; Kiely, C. J.; Gu, L.; Shi, C.; Rodriguez, J. A.; Ma, D. Science. 2017, 357, 6349.
[9] Qin X.; Zhang L.; Xu G.-L.; Zhu S.; Wang Q.; Gu M.; Zhang X.; Sun C.; Balbuena P. B.; Amine K.; Shao, M. ACS Catal. 2019, 9, 10.
[10] Zheng X.; Li P.; Dou S.; Sun W.; Pan H.; Wang D.; Li Y.Energ Environ. Sci. 2021, 14, 2809-2858.
[11] Wang Y.; Liu J.; Yuan H.; Liu F.; Hu T.; Yang B. Adv. Funct. Mater. 2023, 33, 21.
[12] Li M.-Y.; Li H.-M.; Xiang K.; Zou J.; Fu X.-Z.; Luo J.-L.; Luo G.-Q.; Zhang, J.-J. Electrochem. Energy Rev. 2025, 8, 4.
[13] Matthews T.; Mbokazi S. P.; Dolla T. H.; Gwebu S. S.; Mugadza K.; Raseruthe K.; Sikeyi L. L.; Adegoke K. A.; Saliu O. D.; Adekunle A. S.; Ndungu P.; Maxakato N. W.Small Sci. 2024, 4, 2300057.
[14] Chen W.; Shi J.; Wu Y.; Jiang Y.; Huang Y.-C.; Zhou W.; Liu J.; Dong C.-L.; Zou Y.; Wang S. Angew. Chem. Int. Ed. 2023, 63, 4.
[15] Tang Z.; Li Y.-J.; Zhang K.-X.; Wang X.-X.; Wang S.-Y.; Sun Y.-F.; Zhang H.-Y.; Li S.-Y.; Wang J.-R.; Gao X.-Y.; Hou Z.-S.; Shi L.-L.; Yuan Z.; Nie K.-Q.; Xie J.-Z.;Yang Z.-Y.; Yan, M.-F. ACS Energy Lett. 2023, 8, 9.
[16] Shejale A. D.; Yadav G. D. Int. J.Hydrogen Energ. 2019, 46, 6.
[17] Wang L.; Du D.; Zhang B.; Xie S.; Zhang Q.; Wang H.; Wang Y. Chinese.J. Catal. 2021, 42, 9.
[18] Ramadoss A.; Krishnamoorthy K.; Kim S. J.; Mater. Res. Bull. 2012, 47, 9.
[19] Zhang K.; Li C.; Liu J.; Zhang S.; Wang M.; Wang L. Small. 2023, 20, 14.
[20] Bao Y.; Zha M.; Sun P.; Hu G.; Feng L. J. Energy. Chem. 2020, 59, 748-754.
[21] Li G.; Jang H.; Liu S.; Li Z.; Kim M. G.; Qin Q.; Liu X.; Cho J. Nat.Commun. 2022, 13, 1270.
[22] Wang, Ying, Liu, Fan, Yuan, Hongjie, Hu, Tianjun. Front. Mater. Sci. 2021, 15, 567-576.
[23] Cui X.; Xu Y.; Chen L.; Zhao M.; Yang S.; Wang Y.Appl Catal B: Environ. 2018, 244(5), 957-964.
[24] Zhang Y.; Wang C.; Fu J.; Zhao H.; Tian F.; Zhang R. Chem.Commun. 2018, 54, 9639-9642.
[25] Xu G.-R.; Dong Z.; Zhao Y.; Zhang W.; Sun Q.; Ju D.; Wang L. Small 2023, 20, 10.
[26] Gao F.; Zhang Y.; Ren F.; Shiraishi Y.; Du Y. Adv. Funct. Mater. 2020, 30, 16.
[27] Ji Q.; Neeva B.; Changhai L.; Wenzhen L.Appl Catal B: Environ. 2016, 199, 494-503.
[28] Gu Z.; Xiong Z.; Ren F.; Li S.; Xu H.; Yan B.; Du Y. J.Taiwan Inst. Chem. E. 2017, 83, 32-39.
[29] Pech-Rodríguez, W. J.; Calles-Arriaga, C.; González-Quijano, D.; Vargas-Gutiérrez, G.; Morais, C.; Napporn, T. W.; Rodríguez-Varela, F. J. J. Power Sources. 2017, 375, 335-344.
[30] Xie S.; Huang H.; Deng L.; Li J.; Yue R.; Xu J. Appl. Surf. Sci. 2022, 598, 153879.
[31] Zhao Y.; Yuan Z.-H.; Huang J.-T.; Wang M.-Y.; He B.; Ding Y.; Jin P.-J.; Chen Y. Nanoscale. 2022, 15, 1947-1952.
[32] Li Z.; Lao X.; Yang L.; Fu A.; Guo P. SCMs. 2022, 66, 150-159.
[33] Lv H.; Mao Y.; Yao H.; Ma H.; Han C.; Yang Y.-Y.; Qiao Z.-A.; Liu,B. Angew. Chem. Int. Ed. 2024, 63, 15.
[34] Fu H.; Huang Z.; Zhu T.; Guan L.; Pao C.-W.; Huang W.-H.; Zhang N.; Liu T. ACS Materials Lett. 2024, 6, 10.
[35] Ju Z.-C.; Feng Q.-L.; Jang, Y; Chen Y.-X.; Zhuang Q.-C.; Xing Z.; Jang J.-M.Acta Chim. Sinica. 2024, 82, 11(in Chinese).
(鞠治成,封麒麟,江野,陈亚鑫,庄全超,邢政,蒋江民,化学学报,2024,82,11)
[36] Zang Y.-Q.; Zang C.; Gong, Y; Lu F.; Fan Q.-L.Acta Chim. Sinica. 2024, 82, 12(in Chinese).
(张雨琦,占辰,贡祎,陆峰,范曲立,化学学报,2024,82,12)
[37] Yang Z.-H.; Gan X.-J.; Wang S.-Z.; Duan J.-Y.; Zhai T.-Y.; Liu Y.-W.Acta Chim. Sinica. 2023, 81, 11 (in Chinese).
(杨镇鸿,干晓娟,王书哲,段君元,翟天佑,刘友文,化学学报,2023,81,11)
[38] Zhao Z.-G.; Zhou M.-Y.; Jin D.; Zhang, D.-P. Chin. J. Chem.Eng. 2024, 75, S1 (in Chinese).
(赵振刚,周梦瑶,金典,张大骋,化工学报,2024,75,S1)
[39] Shen Y.; Xu, L.-W. Chin. J. Org.Chem. 2025, 45, 3(in Chinese).
(沈炀, 徐利文,有机化学,2025,45,3)
[40] Hou H.-H.; Yang S.-N.; Xu Y.-S.; Ma C.-H.; Zhang X.-Y.; Fan, X.-S. Chin. J. Chem. 2025, 43, 9.
文章导航

/