相较于磷酸铁锂,磷酸铁锰锂LiMn1-xFexPO4(LMFP,0 < x < 1)可提供更高的放电电压,然而其低电子、离子电导率和Jahn-Teller晶格畸变导致了低可逆容量和短循环寿命。本文使用溶剂热合成工艺,将物质的量比例为1%的Ni2+掺入到LiMn0.75Fe0.25PO4正极材料。结果表明Ni2+的掺入可导致Li-O键的伸长,拓宽Li+传输通道,从而有利于Li+的脱出和嵌入,提高了材料的放电比容量和倍率性能。同时掺入的Ni2+缩短了Mn/Fe-O键的平均键长,增强了其结合能,进而抑制了Jahn-Teller晶格畸变,改善了材料的结构和循环稳定性。与未掺杂的LiMn0.75Fe0.25PO4相比,Ni2+掺杂后的LiMn0.75Fe0.24Ni0.01PO4具有较低的电荷转移电阻和较高Li+扩散系数。在0.1 C倍率下,其放电比容量从未掺杂的136 mAh•g-1上升到147 mAh•g-1,且在0.5 C下循环150圈后,容量保持率仍有88.2%。因此,Ni2+掺杂策略可被视为一种有潜力且有效的改性手段,用于实现LMFP的快速充放电和长循环。
Compared with lithium iron phosphate, lithium iron manganese phosphate LiMn1-xFexPO4 (LMFP, 0 < x < 1) has a higher discharge voltage. However, its low electronic and ionic conductivities, along with Jahn-Teller lattice distortion, result in low reversible capacity and short cycle life of LMFP. In this study, the solvothermal synthesis process is used to incorporate Ni2+ with a molar ratio of 1% into the LiMn0.75Fe0.25PO4 cathode material. The effects of Ni2+ doping on the structure and electrochemical performance of LiMn0.75Fe0.25PO4 were systematically investigated. Results of X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy confirm the successful incorporation of Ni2+ ions into the crystal lattice of LiMn0.75Fe0.25PO4. In addition, Rietveld refinement results of XRD data indicate that the incorporation of Ni2+ leads to the elongation of the Li-O bonds and widening of the Li⁺ transport channels. Consequently, this is conducive to the extraction and insertion of Li+, improving the discharge specific capacity and rate performance of the material. Moreover, the incorporated Ni2+ shortens the average bond lengths of the Mn-O and Fe-O bonds, suppresses the Jahn-Teller lattice distortion, and improves the structure and cycling stability of the material. Furthermore, cyclic voltammetry tests reveal that Ni2+ doping could reduce the degree of polarization of the material and enhance the reversibility of the reaction. Analysis of electrochemical impedance spectroscopy reveals that, compared with undoped LiMn0.75Fe0.25PO4, LiMn0.75Fe0.24Ni0.01PO4 exhibits a lower charge-transfer resistance and a higher lithium-ion diffusion coefficient. At a rate of 0.1 C, its discharge specific capacity has been increased from 136 mAh•g-1 of the undoped material to 147 mAh•g-1. The capacity retention rate is still 88.2% after 150 cycles at a rate of 0.5 C. Therefore, the Ni2+ doping strategy can be regarded as a promising and effective modification method for achieving rapid charge and discharge and long cycle of LMFP.
[1] Deng Y.; Yang C.; Zou K.; Qin X.; Zhao Z.; Chen G.Adv. Energy Mater. 2017, 7, 1601958.
[2] Cai M.; Sun C.; Le D. H.; Li P. Y.; Huang Y. D.; Chen H. Z.; Zhang X. H.; Zheng J. C.J. Energy Storage 2024, 95, 112511.
[3] Xu J.; Cai X.; Cai S.; Shao Y.; Hu C.; Lu S.; Ding S.Energy Environ. Mater. 2023, 6, e12450.
[4] Wang L.; Qiu J.; Wang X.; Chen L.; Cao G.; Wang J.; Zhang H.; He X.eScience 2022, 2, 125.
[5] Gu X. Y.; Li J.;Sun Q.; Wang, C. Y. Acta Chim. Sinica 2024, 82, 146(in Chinese). (顾晓瑜, 李进, 孙千, 王朝阳, 化学学报, 2024, 82, 146.)
[6] Wani T. A.; Suresh, G. Journal of Energy Storage2021, 44, 103307.
[7] Luo D. D.; Tian J. H.;Zhu X.; Wang Z. D.; Shan Z. Q.J. Inorg. Chem. 2017, 32, 1000(in Chinese). (罗迪迪, 田建华, 朱希, 王炤东, 单忠强, 无机化学学报, 2017, 32, 1000.)
[8] Wang Y.; Zheng Q. J.;Lin, D. M. Acta Chim. Sinica2014, 72, 537(in Chinese). (万洋, 郑荞佶, 赁敦敏, 化学学报, 2014, 72, 537.)
[9] Yao M.; Wang Y. T.; Chen J. A.; Dong H.; Li M.; Zhang X.; Wang C.; Huang G.; Xu S.ACS Appl. Mater. Interfaces 2024, 16, 66077.
[10] Xu E.; Sun X.; Lyv W.; Li F.; Li R.; Cai W.; Wu H.; Wu K.; Zhang Y.Ind. Eng. Chem. Res. 2024, 63, 9631.
[11] Lu H. S.; Hou R. L.; Chu S. Y.; Zhou H. S.; Guo S. H.Acta Phys.-Chim. Sin. 2023, 39, 68(in Chinese). (鲁航语, 侯瑞林, 褚世勇, 周豪慎, 郭少华, 物理化学学报, 2023, 39, 68.)
[12] Huang M.; Wang M.; Yang L.; Wang Z.; Yu H.; Chen K.; Han F.; Chen L.; Xu C.; Wang L.; Shao P.; Luo X.Nano-Micro Lett. 2024, 16, 207.
[13] Zhang B.; Wang X.; Wang S.; Li Y.; Chen L.; Jiao H.; Yu Z.; Tu J.J. Energy Chem. 2025, 100, 1.
[14] Li S.; Zhang H.; Liu Y.; Wang L.; He X.Adv. Funct. Mater. 2023, 34, 2310057.
[15] Qiu K.; Yan M. X.;Zhao S. W.; An S. L.; Wang, W. ; Jia, G. X. Acta Chim. Sinica2021, 79, 1146(in Chinese). (邱凯, 严铭霞, 赵守旺, 安胜利, 王玮, 贾桂霄, 化学学报, 2021, 79, 1146.)
[16] Zhang K.; Li Z. X.; Li X.; Chen X. Y.; Tang H. Q.; Liu X. H.; Wang C. Y.; Ma J. M.Rare Met. 2023, 42, 740.
[17] Han J.; Yang J.; Xu Z.; Li H.; Wang J.J. Alloys Compd. 2022, 894, 162510.
[18] Luo T.; Zeng T. T.; Chen S. L.; Li R.; Fan R. Z.; Chen H.; Han S. C.; Fan C. L.J. Alloys Compd. 2020, 834, 155143.
[19] Zhuang H.; Bao Y.; Nie Y.; Qian Y.; Deng Y.; Chen G.Electrochim. Acta 2019, 314, 102.
[20] Yao X.; Li D.; Guo L.; Kallel M.; Alahmari S. D.; Ren J.; Seok I.; Roymahapatra G.; Wang C.Adv. Compos. Hybrid Mater. 2024, 7, 63.
[21] Wang L.; Li Y.; Wang Y.; Zhang H.; Dai Y.; Yao Y.; Liang F.Electrochim. Acta 2021, 369, 137675.
[22] Liu W.; Liu X.; Hao R.; Yang Z.; Ouyang B.; Zhang M.; Pan M.; Liu K.J. Electroanal. Chem. 2023, 929, 117117.
[23] Zhang Q.; Liu Y.; Chang C.; Zheng J.J. Energy Storage 2024, 101, 113799.
[24] Wang Y.; Yang H.; Wu C. Y.; Duh J. G.J. Mater. Chem. A 2017, 5, 18674.
[25] Jeong B. J.; Sung J. Y.; Jiang F.; Jung S. P.; Lee C. W.J. Energy Storage 2024,96, 112552.
[26] Pan D.; Liu Z.; Li C.; Wan R.; Wang J.; Chen J.; Wang D.; Liu J.; Zhang Y.; Yi J.; Bao R.; Zhang Z.; Dong P.Particuology 2024, 92, 278.
[27] Yu H.; Zhang E.; Yu J.; Yu S.; Fang Y.; Chen L.; Jiang H.; Li C.J. Mater. Chem. A 2024, 12, 26076.
[28] Sun Y. K.; Oh S. M.; Park H. K.; Scrosati B.Adv. Mater. 2011, 23, 5050.
[29] Oukahou S.; Maymoun M.; Elomrani A.; Sbiaai K.; Hasnaoui A.ACS Appl. Energy Mater. 2022, 5, 10591.
[30] Jang D.; Palanisamy K.; Kim Y.; Yoon W. S.J. Electrochem. Sci. Technol 2013, 4, 102.
[31] Wang X.; Feng Z.; Hou X.; Liu L.; He M.; He X.; Huang J.; Wen Z.Chem. Eng. J. 2020, 379, 122371.
[32] Liang L.; Sun X.; Zhang J.; Hou L.; Sun J.; Liu Y.; Wang S.; Yuan C.Adv. Energy Mater. 2019, 9, 1802847.
[33] Zeng T.; Hu Z.; Zhou Z.; Fan C.; Zhang F.; Liu J.; Liu D. H.Small Methods 2023, 7, 2201390.
[34] Fan J.; Yu Y.; Wang Y.; Wu Q.-H.; Zheng M.; Dong Q.Electrochim. Acta 2016, 194, 52.
[35] Wang L.; Li Y.; Wang Y.; Zhang H.; Dai Y.; Yao Y.; Liang F.Electrochim. Acta 2021, 369, 137675.
[36] Wang Z. C.; Liu L.;Zhu M. Y.; Sun Y.; Zhao, Q. ; Ding, Y. Y. ; Lu, J. X. ;Wang, C. G.; Li Q.;He A. H.; Ye, F. C. Acta Chim. Sinica 2024, 82, 589(in Chinese). (王筑城, 刘磊, 朱梦媛, 孙悦, 赵晴, 丁玉寅, 陆继鑫, 王存国, 李奇, 贺爱华, 叶付臣, 化学学报, 2024, 82, 589.)
[37] Hu H.; Liu X.; Lei Y.; Chen J.; Wu L.; Li Z.; Liu J.; Wang X.J. Energy Storage 2024, 79, 110198.
[38] Li Z.; Ren X.; Zheng Y.; Tian W.; An L.; Sun J.; Guo J.; Wen L.; Wang L.; Liang G.ACS Appl. Energy Mater. 2020, 3, 8573.