研究论文

含苯磺酸类配体的单核Cd(II)配合物催化无溶剂“一锅法”Biginelli反应

  • 王鑫 ,
  • 史燚威 ,
  • 杨瑞杰 ,
  • 宋志国 ,
  • 王敏
展开
  • 渤海大学 化学与材料工程学院 锦州 121013

收稿日期: 2025-03-27

  网络出版日期: 2025-05-23

基金资助

项目受教育部产学合作协同育人项目2024年第一批次(批准号: 230805940290824)资助.

Solvent-Free "One-Pot" Biginelli Reaction Catalyzed by Mononuclear Cd(II) Complex Containing Benzenesulfonic Acid Ligands

  • Xin Wang ,
  • Yiwei Shi ,
  • Ruijie Yang ,
  • Zhiguo Song ,
  • Min Wang
Expand
  • College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013

Received date: 2025-03-27

  Online published: 2025-05-23

Supported by

Ministry of Education’s Industry-University Collaborative Education Project of the First Batch in 2024, China (No.230805940290824).

摘要

本文以对硝基甲苯邻磺酸根(C7H6NO5S-,HL-)和4,4′-联吡啶(bpy)为主辅配体,利用溶剂热合成法制备了结构新颖的单核镉配合物Cd(C10H8N2)4(C7H6NO5S)2(简写为Cd(bpy)4(HL)2),并采用X射线单晶衍射、扫描电镜、能量色散光谱、氮气吸附/脱附分析和热重分析对其进行了表征。以Biginelli反应为探针,探究了Cd(bpy)4(HL)2的催化性能,实验结果表明,Cd(bpy)4(HL)2在催化Biginelli反应中性能良好,在无溶剂、90 oC条件下,芳香醛、芳香酮和脲通过三组分“一锅法”合成了一系列4,6-二芳基-3,4-二氢嘧啶-2(1H)-酮,反应时间短,产物产率高,催化剂通过简单的相分离便可实现回收及重复使用,即使连续催化6次,催化剂仍保持较高的催化活性。利用密度泛函理论(DFT)对Cd(bpy)4(HL)2和反应物进行了结构优化,通过分析Cd(bpy)4(HL)2的Mulliken电荷、分子表面静电势(ESP)和平均局部离子化能(ALIE)预测了配合物的活性位点;通过分析苯甲醛、苯乙酮和脲的ESP预测了反应物的反应位点;并利用X射线光电子能谱对活化作用进行了验证,从而推测出可能的催化机理。Cd(bpy)4(HL)2具有的结构特点使其在催化反应中易与反应底物接触,所具有双活性位点使其在催化反应中呈现共催化作用,从而促进反应的进行。(CCDC:2223337)

本文引用格式

王鑫 , 史燚威 , 杨瑞杰 , 宋志国 , 王敏 . 含苯磺酸类配体的单核Cd(II)配合物催化无溶剂“一锅法”Biginelli反应[J]. 化学学报, 0 : 2 -2 . DOI: 10.6023/A25030096

Abstract

In this work, a structural novel mononuclear cadmium complex, Cd(C10H8N2)4(C7H6NO5S)2 (abbreviated as Cd(bpy)4(HL)2), was synthesized by solvothermal method using 4-nitrotoluene-2-sulfonate anion (C7H6NO5S-, HL-) and 4,4'-bipyridine (bpy) as the main and auxiliary ligands, respectively. The complex was characterized by X-ray single crystal diffraction, scanning electron microscopy, energy dispersive spectroscopy, nitrogen adsorption/desorption analysis and thermogravimetric analysis. The catalytic performance of Cd(bpy)4(HL)2 was investigated by using the Biginelli reaction as a probe. The experimental results showed that Cd(bpy)4(HL)2 exhibited excellent catalytic performance in the Biginelli reaction. A series of 4,6-diaryl-3,4-dihydropyrimidine-2(1H)-ones were synthesized from aromatic aldehydes, aromatic ketones and urea through a three-component one-pot method under solvent-free and 90 oC conditions. The reaction time was short, the product yields were high, and the catalyst could be recovered and reused by simple phase separation. Even after six consecutive catalytic cycles, the catalyst still maintained high catalytic activity. The catalysts before and after catalysis were characterized by powder X-ray diffraction, infrared spectroscopy and X-ray photoelectron spectroscopy, and the test findings were compared . From the results, the phase purity, composition and structure of the catalyst did not change significantly after continuous use for six times, and the chemical properties of the catalyst were stable. The structures of Cd(bpy)4(HL)2 and the reactants were optimized by density functional theory (DFT). The active sites of the complex were predicted by analyzing the Mulliken charges, molecular surface electrostatic potential (ESP) and average local ionization energy (ALIE) of Cd(bpy)4(HL)2. The reaction sites of the reactants were predicted by analyzing the ESP of benzaldehyde, acetophenone and urea. The activation effect of the active sites on the reaction sites was verified by X-ray photoelectron spectroscopy. Therefore, the possible catalytic mechanism was speculated. The structural characteristic of Cd(bpy)4(HL)2 makes it easy to contact with the reaction substrates, and the presence of two active sites enables it to exhibit co-catalytic effect in the catalytic reaction, thereby promoting the reaction.(CCDC:2223337)

参考文献

[1] de Fátima, Â.; Braga, T. C.; Neto, L. D. S.; Terra, B. S.; Oliveira, B. G.; da Silva, D. L.; Modolo, L. V. J. Adv. Res. 2015, 6, 363.
[2] Nagarajaiah H.; Mukhopadhyay A.; Moorthy J. N.Tetrahedron Lett. 2016, 57, 5135.
[3] Khaldi-Khellafi, N.; Makhloufi-Chebli, M.; Oukacha-Hikem, D.; Bouaziz, S.T.; Lamara, K.O.; Idir, T.; Benazzouz-Touami, A.; Dumas, F. J. Mol. Struct. 2019, 1181, 261.
[4] Biginelli, P. Gazz. Chim. Ital.1893, 23, 360.
[5] More U. B.Asian J. Chem. 2012, 24, 1906.
[6] Hu E. H.; Sidler D. R.; Dolling U. H. Chin. J. Org.Chem. 1998, 63, 3454.
[7] Pasunooti K. K.; Chai H.; Jensen C. N.; Gorityala B. K.; Wang S.; Liu X. W.Tetrahedron Lett. 2011, 52, 80.
[8] Xin J. G.; Chang L.; Hou Z. R.; Shang D. J.; Liu, X. H; Feng, X. M.Chem.-Eur. J. 2008, 14, 3177.
[9] Kefayati H.; Fakhriyannejad M.; Mohammadi A. A.Phosphorus, Sulfur, andSilicon. 2009, 184, 1796.
[10] Phucho I. T.; Tumtin S.; Nongpiur A.; Nongrum R.; Nongkhlaw R. L. J. Chem. Pharm. Res. 2010, 2, 214.
[11] Saini A.; Kumar S.; Sandhu J. S.Indian J. Chem. 2007, 46, 1690.
[12] Zhang Z. G.; Zhang L. Q.; Liu Q. F.; Liu T. X.; Zhang G. S. J. Org. Chem. 2014, 79, 2281.
[13] Bhuyan D.; Saikia M.; Saikia L.Microporous Mesoporous Mater. 2018, 256, 39.
[14] El Mejdoubi, K.; Sallek, B.; Cherkaoui, H.; Chaair, H.; Oudadesse, H. Kinet. Catal. 2018, 59, 290.
[15] Zheng L. L.; Wang Y. Q.; Li X. G.; Zhang W. B. J. Org. Chem. 2022, 42, 3714(in Chinese).
(郑露露, 王雨晴, 李小港, 张文彬, 有机化学, 2022, 42, 3714.)
[16] Chopda L. V.; Dave P. N.ChemistrySelect. 2020, 5, 14161.
[17] Wu P.; Feng L.; Liang, Y.,; Zhang X.; Mahmoudi B.; Kazemnejadi M. Appl.Catal., A. 2020, 590, 117301.
[18] Boyarskii, V. P. Russ. J. Gen.Chem. 2017, 87, 1663.
[19] Maity R.; Birenheide B. S.; Breher F.; Sarkar B.ChemCatChem. 2021, 13, 2337.
[20] Li H.; Zhang W.; Wei Z.; Xia L. H.; Long M.; Li Z.; Zhang T. Eur. J. Inorg. Chem. 2022, 2022, e202200008.
[21] Ríos Moreno,P.; Díez, J.; López Serrano, J.; Rodríguez, A.; Conejero, S. Chem.-Eur. J. 2016, 22, 16791.
[22] Wang Y. N.; Wang C.; Ma H. Y.Acta Chim. Sinica 2025, 83, 25(in Chinese).
(王玉娜, 王超, 马海燕, 化学学报, 2025, 83, 25.)
[23] Wang J. Y.; Ma H. Y.Acta Chim. Sinica 2024, 82, 1058(in Chinese).
(王镜焱, 马海燕, 化学学报, 2024, 83, 1058.)
[24] Manikandan R.; Chitrapriya N.; Jang Y. J.; Viswanathamurthi P. RSC Adv. 2013, 3, 11647.
[25] Majumdar D.; Biswas J. K.; Mondal M.; Babu M.S.S.; Das, S.; Metre, R. K.; SreeKumar, S. S.; Bankura, K.; Mishra, D. Chemistryselect 2018, 3, 2912.
[26] Dong L. L.; Liu J.; Yang H.; Fu Y. P.; Liu H. L.; Chen X. L.; Cui H. L.; Liu L.; Eang J. J. J. Inorg. Chem. 2025, 41, 809(in Chinese).
(董璐璐, 刘洁, 杨华, 符钰培, 刘红丽, 陈小莉, 崔华莉, 刘琳, 王记江, 无机化学学报, 2025, 41, 809.)
[27] Gao X. Z.; Song H.; Li B.; Wang R.; Zhu X. S.; Tian X. Y. J. Inorg. Chem. 2022, 38, 1808(in Chinese).
(高学智, 宋欢, 李冰, 王睿, 朱小双, 田晓燕, 无机化学学报, 2022, 38, 1808.)
[28] Zhang Y. C.; Shi Y. W.; Ynag R. J.; Wang X.; Song Z. G.; Wang M. J. Inorg. Chem. 2024, 40, 1501(in Chinese).
(张迎春, 史燚威, 杨瑞杰, 王鑫, 宋志国, 王敏, 无机化学学报, 2024, 40, 1501.)
[29] Wang M.; Song Z. G.; Liang Y. Synth.Commun. 2012, 42, 582.
[30] Sun W. J.; Gao E. Q. Mol. Catal. 2020, 482, 110746.
[31] Shen Y.; Bai C.; Zhan Y.; Ning F.; Wang H.; Lv G.; Zhou X. ChemPlusChem 2020, 85, 1646.
[32] Lu W. G.; Su C. Y.; Lu T. B.; Jiang L.; Chen J. M. J. Am. Chem. Soc. 2006, 128, 34.
[33] Dayal S; Burda C. J. Am. Chem. Soc. 2008, 130,2890.
[34] Hema M. K.; Karthik C. S.; Pampa K. J.; Mallu P.; Lokanath N. K. J. Mol. Struct. 2021, 1243, 130774.
[35] Liang R.; Wang Y. T.; Guo Y. K.; Xuan X. P. J. Inorg. Chem. 2017, 33, 1465(in Chinese).
(梁蕊, 王玉停, 郭永康, 轩小朋. 无机化学学报, 2017, 33, 1465.)
[36] Wu G. Z.; Wang P. F.; Li S. Q.; Fang X. L. J. Inorg. Chem. 2020, 36, 226(in Chinese).
(吴国志, 汪鹏飞, 李善青, 方霄龙. 无机化学学报, 2020, 36, 226.)
[37] Ren Y M; Cai C. Monatsh. Chem. 2009, 140, 49.
[38] Wang M.; Song J. L.; Zhao S.; Wan X. Org Prep Proced Int 2014, 46, 457.
[39] Nikpassand M.; Hoseinnezhad E.Arabian J. Chem. 2020, 13, 8995.
[40] Amoozadeh A.; Azhari S.; Kolvari E.; Otokesh S. J. Chin. Chem. Soc. 2015, 62, 968.
[41] Saikia S.; Borah R. ChemistrySelect 2019, 4, 8751.
[42] Zhang Y.; Lei M.; Xue K.; Sun G.; Zhou Y.; Hou J.; Wu W. Synth.Commun. 2020, 50, 3661.
[43] Nematpour M.; Rezaee E.; Jahani M.; Tabatabai S. A. J. Sulfur Chem. 2018, 39, 151.
[44] Murray J. S.; Politzer P.Wiley Interdiscip. Rev.:Comput. Mol. Sci. 2011, 1, 153.
[45] Bulat F. A.; Murray J. S.; Politzer P. Comput. Theor. Chem. 2021, 1199, 113192.
[46] Politzer P.; Murray J. S.; Bulat F. A. J. Mol. Model. 2010, 16, 1731.
[47] Brinck T.; Stenlid J. H. Adv. Theory Simul. 2018, 2, 1800149.
[48] Vassileva P.; Krastev V.; Lakov L.; Peshev O. J. Mater. Sci.2004, 39, 3201.
[49] Neuvonen H.; Neuvonen K.; Koch A.; Kleinpeter E.; Pasanen P. J. Org. Chem. 2002, 67, 6995.
[50] Bruker, S.SMART(Version 5.628), SAINT(Version 6.45), SADABS, Bruker AXS Inc., Madison, WI, 2001.
[51] Dolomanov O. V.; Bourhis L. J.; Gildea R. J.; Howard J. A.K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.
[52] Sheldrick G. M.;SHELXL-97, Program for Crystal Structure Solution, University of G9ttingen, G9ttingen, 1997.
[53] Becke A. D. J. Chem. Phys. 1993, 981, 448799.
[54] Lee C.; Yang W.; Parr R. G. Phys. Rev. B 1988, 37, 785.
[55] Lu T.; Chen F. W. J. Comput. Chem. 2012, 33, 580.
[56] Humphrey W.; Dalke A.; Schulten K. J.Mol. Graphics 1996, 14, 27.
文章导航

/