化学学报 >

0 25040135 - 25040135

DOI: https://doi.org/10.6023/A25040135

综述

共价有机框架的设计及质子传导性能研究进展

  • 班渺寒 ,
  • 双亚洲 ,
  • 杨安平 ,
  • 郑长勇 ,
  • 张伟 ,
  • 徐飞
展开
  • a(西北工业大学 材料学院 西安 710072)
    b(西北化工研究院有限公司 西安 710061)
班渺寒,西北工业大学材料学院在职博士,西北化工研究院有限公司工程师。研究方向为质子交换膜燃料电池关键材料的开发。张伟,西北化工研究院,精细化工研究中心主任、教授级高级工程师,三秦学者。2009年于中科院大连化物所获理学博士学位。负责、参加国家863、国家自然基金、中科院领域前沿创新、中科院重要方向性、振兴东北重点、中石化科技、中石油技术开发、陕西省重点研发计划等43项。发表论文63篇,主持编写标准3件;申请授权专利57件。主要从事煤、石油、清洁能源、天然气深加工及含氟精细化学品等领域的应用和基础研究。徐飞,西北工业大学材料学院教授、博士生导师、国家基金委优青、洪堡学者。于2015年在中山大学获得博士学位, 2012-2014年在日本分子科学研究所从事联合培养博士研究,2018-2020年在德累斯顿工业大学从事洪堡博士后研究。主要研究方向为功能多孔聚合物和炭材料的创新制备及在电化学储能等领域的研究。

收稿日期: 2025-04-28

  网络出版日期: 2025-06-12

基金资助

国家自然科学基金面上项目(52473220),陕西省重点研发计划(2025CY-YBXM-444)

Advances in Covalent organic frameworks Design for Proton Conduction

  • Miaohan Ban ,
  • Yazhou Shuang ,
  • Anping Yang ,
  • Changyong Zheng ,
  • Wei Zhang ,
  • Fei Xu
Expand
  • a(Northwestern Polytechnical university, School of Materials Science and Engineering, Xi’An 710072)
    b(Northwest Research Institute of Chemical Industry, Xi’An 710061)
E-mail: feixu@mail.nwpu.edu.cn; 2022120095@mail.nwpu.edu.cn

Received date: 2025-04-28

  Online published: 2025-06-12

Supported by

National Natural Science Foundation of China (52473220), Shaanxi Provincial Key Research and Development Program (2025CY-YBXM-444)

摘要

质子交换膜燃料电池(PEMFCs)通过氢氧电化学反应直接将化学能转化为电能,为高效清洁能源转化提供了重要的途经。质子交换膜作为PEMFC的核心功能组件,通过定向传导质子实现电化学能的连续转换,对电池性能具有决定性的作用。共价有机框架(COFs)作为一种新型有机多孔材料,具有高度结晶性、有序的多孔排列、功能可修饰性、结构可调性以及较高稳定性,作为质子交换膜具有潜在的优势。COFs可功能修饰的骨架可以定制质子传导功能位点,规整的孔道可以限域容纳多种质子载体/供体,周期性分布的孔结构可以构建连续稳定的质子传输通道,在含水/无水质子传导中均发挥巨大的作用。本文系统综述了近年来COFs材料的设计与质子传导性能研究进展,重点讨论了COF骨架功能化设计、孔内限域和孔结构调控三种策略对质子传导性能的提升与传导机制解析,并展望了该领域未来发展方向。

本文引用格式

班渺寒 , 双亚洲 , 杨安平 , 郑长勇 , 张伟 , 徐飞 . 共价有机框架的设计及质子传导性能研究进展[J]. 化学学报, 0 : 25040135 -25040135 . DOI: 10.6023/A25040135

Abstract

Proton exchange membrane fuel cells (PEMFCs) have emerged as a revolutionary technology in the field of clean energy, enabling the direct conversion of chemical energy to electricity through hydrogen-oxygen electrochemical reactions. This technology fundamentally circumvents the limitations of conventional combustion-based power generation, achieving near-zero greenhouse gas emissions while presenting a critical solution for efficient and environmentally-benign utilization of chemical energy. As the critical component of PEMFCs, the proton exchange membrane (PEM) plays an essential role in determining device-level efficiency and long-term operational stability. The PEM is proton conductive polymer membrane existing between the anode and cathode, enabling selective protons transporting while blocking electrons and gases. The ideal PEM materials must concurrently satisfy two critical operational requirements: (1) establishing efficient proton conduction pathways from anode to cathode with directional specificity, while (2) exhibiting robust resistance to gas and electricity leakage. To address these competing demands, strategic innovations in nanostructured membrane architectures continue to drive progress in next-generation PEMs. Covalent organic frameworks (COFs), a novel class of porous organic crystalline materials, demonstrate exceptional potential as next-generation PEM candidates owing to their inherent advantages including precise structural tunability, periodic pore arrangements, customizable functionality, and remarkable chemical stability. The unique architectural features of COFs provide unprecedented opportunities for proton conduction engineering. Their molecular-designed frameworks allow precise engineering of proton-conductive sites through strategic chemical modifications, while the well-defined nanochannels enable effective confinement of diverse proton carriers/vehicles. The periodic and topological pore nanoarchitectures facilitate the establishment of hierarchical proton transport pathways. These characteristics demonstrate exceptional performances in either hydrated or anhydrous proton conduction systems. This review systematically examines recent advancements in design and preparation of COF-based proton conducting materials. Beginning with a brief introduction to the PEMFCs and current PEM, the basic knowledge of COFs and their potential structural advantages for proton conduction are discussed. Subsequently, the preparation of COF-based membrane and the key performance evaluation of PEM are summarized. Particular emphasis has been placed on design strategies to enhance proton conduction including: (1) Framework design with incorporation of proto-conduction functionalities, (2) Pore nanoconfinement of proton-conducting guest moieties and (3) Pore-structure engineering for building proton superhighways. The proton conductivity under different temperatures and humidifies are discussed, along with the correlations to their structures and proton conduction mechanisms. Finally, the summery and perspective in this field are presented, underscoring challenges and opportunities in this burgeoning field. We hope this review would offer valuable insights into designing high-performance COF-based PEMs.

参考文献

[1] Islam A.; Islam T.; Mahmud H.; Raihan O.; Islam M. S.; Marwani H. M.; Raham M. M.; Asiri A. M.; Hasan M. M.; Hasan M. M.; Salman M. S.; Kubra K. T.; Shenashen M. A.; Sheikh M. C.; Awual M. R.Int. J. Hydrog. Energy. 2024, 67, 458.
[2] Ahmad S.; Nawaz, T., Ali, A., Orhan, M. F.; Samreen A.; Kannan A. M.Int. J. Hydrog. Energy. 2022, 47, 19086.
[3] Mauritz K. A.; Moore R. B.Chem. Rev. 2004, 104, 4535.
[4] Atanasov V.; Lee A. S.; Park E. J.; Maurya S.; Baca E. D.; Fujimoto C.; Hibbs M.; Matanovic I.; Kerres J.; Kim Y. S.Nat. Mater. 2021, 20, 370.
[5] Lee K.-S.; Spendelow, J. S.; Choe, Y. -K.; Fujimoto, C.; Kim, Y. S.Nat. Energy. 2016, 1, 16120.
[6] Xu F.; Yang S.; Chen X.; Liu Q.; Li H.; Wang H.; Wei B.; Jiang D.Chem. Sci. 2019, 10, 6001.
[7] Shuang Y.; Zhang R.; Wang H.; Li L.; Hao X.; Ma Z.; Wang S.; Wang J.; Wang F.; Yang X.; Guo P.; Xu F.; Wang H.; Ye Q.; Liu W.; Jian J.; Wang H.Adv. Mater. 2025, DOI: 10.1002/adma.202500468
[8] Diercks C. S.; Yaghi O. M. Science. 2017, 355, 1585.
[9] Liu R. Y.; Tan K. T.; Gong Y.; Chen Y.; Li Z.; Xie S.; He T.; Lu Z.; Yang H.; Jiang D.-L.Chem. Soc. Rev., 2021, 50, 120.
[10] Dey K.; Mohata S.; Banerjee; R.ACS Nano. 2021, 15, 12723.
[11] Yan S.-R.; Liu W.-H.; Duan F.; Chen M.-Q.; Dong W.-F.; Lu S.-L.; Du M.-L.Acta Chim. Sinica. doi: 10.6023/A25030077 (in Chinese)
(闫生荣, 刘文浩, 段芳, 陈明清, 东为富, 陆双龙, 杜明亮. 化学学报, doi: 10.6023/A25030077)
[12] Xie Z.; Chen X.; Wang W.; Ke X.; Zhang X.; Wang S.; Wu X.; Yu J. C.; Wang X.Angew Chem Int Ed Engl. 2024, 63, e202410179.
[13] Qian Z.; Wang Z. J.; Zhang K. A.I.Chem. Mater. 2021, 33, 1909.
[14] Li C.; Xu H.; Xiong H.; Xia S.; Peng X.; Xu F.; Chen X.Adv. Funct. Mater. 2024, 34, 2405539.
[15] Tan D.; Zhuang R.; Chen R.; Ban M.; Feng W.; Xu F.; Chen X.; Wang Q.Adv. Funct. Mater. 2024, 34, 2311655.
[16] Yu H.; Zhang X.; Chen Q.; Zhou P.-K.; Xu F.; Wang H.; Chen, X. Chem. Res. Chin. Univ.2024, https://doi.org/10.1007/s40242-024-4213-3
[17] Wu J.; Xu F.; Li S.; Ma P.; Zhang X.; Liu Q.; Fu R.; Wu D.Adv. Mater. 2018, 31, e1802922.
[18] Liu Y.; Liu X.; Su A.; Gong C.; Chen S.; Xia L.; Zhang C.; Tao X.; Li Y.; Li Y.; Sun T.; Bu M.; Shao W.; Zhao J.; Li X.; Peng Y.; Guo P.; Han Y.; Zhu Y.-H.Chem. Soc. Rev. 2024, 53, 502.
[19] Xia C.; Kirlikovali K.-O.; Nguyen T. H.; Nguyen X. C.; Tran Q. B.; Duong M. K.; Nguyen Dinh, M. T.; Nguyen, D. L. T.; Singh, P.; Raizada, P.; Nguyen, V.-H.; Kim, S. Y.; Singh, L.; Nguyen, C. C.; Shokouhimehr, M.; Le, Q. V.Coord. Chem. Rev. 2021, 446, 214117.
[20] Zhuang R.; Cai X.; Qu C.; He S.; Kaskel S.; Shenouda A. Y.; Wang H.; Xu F.Carbon. 2024, 221, 118862.
[21] Li Z.; Zhuang R.; Xu W.; Ban M.; Xu F.Journal of Functional Polymers, 2024, 37, 356. (in Chinese)
|(李昭能, 庄容, 许玮航, 班渺寒, 徐飞. 功能高分子学报,2024,37,356)
[22] Tan D.; Zhang X.; Hao S.; Ban M.; Xu F.Journal of Functional Polymers. 2024, 37, 451. (in Chinese)
(谭德明,张馨壬,郝爽爽,班渺寒,徐飞. 功能高分子学报,2024,37,451)
[23] CôTé, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science. 2005, 310, 1166.
[24] Zhang W.; Li J.; Li H.; Ji J.; Gong C.; Ding S.PROG CHEM. 2024, 36, 48.
[25] Zhang Q.; Dong S.; Shao P.; Zhu Y.; Mu Z.; Sheng D.; Zhang T.; Jiang X.; Shao R.; Ren Z.; Xie J.; Feng X.; Wang B.Science. 2022, 378, 181.
[26] Kreuer S.; Kandambeth S.; Biswal B. P.; Sasmal H. S.; Kumar S.; Pachfule P.; Banerjee R.J Am Chem Soc. 2017, 139, 1856.
[27] Shi Z.; Guo Y.; Zou X.; Zhang J.; Chen Z.; Shan M.; Zhang Z.; Guo S.; Yan F.Angew Chem Int Ed Engl. 2025, 64, e202420619.
[28] Zhu R.-M.; Fu J.-X.; Chen L.-H.; Gu Z.-G.Mater. Chem. Front. 2023, 7, 5932.
[29] Li Q.; Gao H.; Zhao Y.; Zhou B.; Yu L.; Huang Q.; Jiang L.; Gao J.Angew Chem Int Ed Engl. 2024, 63.
[30] Yang J.; Xu H.; Li J.; Gong K.; Yue F.; Han X.; Wu K.; Shao P.; Fu Q.; Zhu Y.; Xu W.; Huang X.; Xie J.; Wang F.; Yang W.; Zhang T.; Xu Z.; Feng X.; Wang B.Science. 2024, 385, 1115.
[31] Yang Q.; Li X.; Xie C.; Liu N.; Yang J.; Kong Z.; Kang Z.; Wang R.; Li X.; Sun D.Nano Res. 2023, 16, 10946.
[32] Campbell, N. L. Clowes, R.; Ritchie L. K.; Cooper A. I.Chem. Mater. 2009, 21, 204.
[33] Peng Y.; Xu G.; Hu Z.; Cheng Y.; Chi C.; Yuan D.; Cheng H. Zhao,D. ACS Appl. Mater. Interfaces. 2016, 8, 18505.
[34] Wan S.; Guo J.; Kim. J.; Ihee, H.; Jiang, D.Angew Chem Int Ed Engl. 2008, 47, 8826.
[35] Yang C.-X.; Liu C.; Cao Y.-M.; Yan X.-P.ChemComm. 2015, 51, 12254.
[36] Liu L.; Yin L.; Cheng D.; Zhao S.; Zhang H,-Y.; Zhang, N.; Zhu, G.Angew Chem Int Ed Engl. 2021, 60, 14875.
[37] Peng Y.; Xu G.; Hu Z.; Cheng Y.; Chi C.; Yuan D.; Cheng H. Zhao,D.ACS Appl. Mater. Interfaces. 2016, 8, 18505.
[38] Cao L.; Wu H.; Cao Y.; Fan C.; Zhao R.; He X.; Yang P.; Shi B.; You X.; Jiang Z.Adv Mater. 2020, 32(52), e2005565.
[39] Dey K.; Pal M.; Rout K.; C. Kunjattu, H. S.; Das, A.; Mukherjee, R.; Kharul, U. K.; Banerjee, R.J Am Chem Soc. 2017, 139, 13083.
[40] Huang T.; Jiang H.; Douglin J. C.; Chen Y.; Yin S.; Zhang J.; Deng X.; Wu H.; Yin Y.; Dekel, D. R;. Guiver, M. D.; Jiang Z.Angew Chem Int Ed Engl. 2023, 62, e202209306.
[41] Sasmal H. S.; Aiyappa H. B.; Bhange S. N.; Karak S.; Halder A.; Kurungot S.; Banerjee R.Angew Chem Int Ed Engl. 2018, 57, 10894.
[42] Liu L.; Ma Y.; Li B.; Yin L.; Zang H. Y.; Zhang N.; Bi H.; Wang S.; Zhu G.Small. 2024, 20, e2308499.
[43] Paul D. K.;McCreery, R.; Karan, K.J Electrochem Soc. 2014, 161, F1395.
[44] Yang Y.; Zhang P.; Hao L.; Cheng P.; Chen Y.; Zhang, Z. Angew Chem Int Ed Engl.2021, 60, 21838., 3678.
[45] Kreuer K.-D.; Paddison S. J.; Spohr E.; Schuster M.Chem. Rev. 2004, 104(10), 4637.
[46] Maiti T. K.; Singh J.; Majhi J.; Ahuja A.; Maiti S.; Dixit P.; Bhushan S.; Bandyopadhyay A.; Chattopadhyay S.Polymer. 2022, 255, 125151.
[47] Shinde D. B.; Aiyappa H. B.; Bhadra M.; Biswal B. P.; Wadge P.; Kandambeth S.; Garai B.; Kundu T.; Kurungot S.; Banerjee R.J. Mater. Chem. A. 2016, 4(7), 2682.
[48] Vengatesan S.; Panha K.; Fowler M. W.; Yuan X.-Z.; Wang H. J Power Sources. 2012, 207, 101.
[49] Lim C.; Ghassemzadeh L.; Van Hove, F.; Lauritzen, M.; Kolodziej, J.; Wang, G. G.; Holdcroft, S.; Kjeang, E.J Power Sources. 2014, 257, 102.
[50] Touhami S.; Crouillere M.; Mainka J.; Dillet J.; Nayoze-Coynel, C.; Bas, C.; Dubau, L.; El Kaddouri, A.; Dubelley, F.; Micoud, F.; Chatenet, M.; Bultel, Y.; Lottin, O.J Power Sources. 2022, 520, 230880.
[51] Ngo P. M.; Karimata T.; Saitou T.; Ito K.J Power Sources. 2023, 556, 232446.
[52] Phang, W. J. Jo, H. Lee, W. R. Song, J. H. Yoo, K. Kim, B. Hong, C. S.Angew Chem Int Ed Engl. 2015, 54, 5142.
[53] Yao J.; Xu G.-X.; Zhao Z.; Guo J.; Li S.; Cai W.; Zhang S.Int J Hydrogen Energ. 2019, 44, 24985.
[54] Xu F.; Wang Y.; Lian C.; Xu Z.J. Membr. Sci.. 2022, 648, 120361.
[55] Guo Y.; Zou X.; Li W.; Hu Y.; Jin Z.; Sun Z.; Gong S.; Guo S.; Yan F.J Mater Chem A. 2022, 10, 6499.
[56] Joos M.; Kang X.; Merkle R.; Maier J.Nat. Mater. 2025.
[57] Shin D. W.; Guiver M. D.; Lee Y. M.Chem. Rev. 2017, 117, 4759.
[58] Xu H.; Tao S.; Jiang D.Nat. Mater. 2016, 15, 722.
[59] Hurd J. A.; Vaidhyanathan R.; Thangadurai V.; Ratcliffe C. I.; Moudrakovski I. L.; Shimizu G. K.Nat. Chem. 2009, 1, 705.
[60] Liu S.; Li H.; Shuai Y.; Ding Z.; Liu Y.Mater. Adv. 2022, 3, 8647.
[61] Ranjeesh K. C.; Illathvalappil R.; Veer S. D.; Peter J.; Wakchaure V. C.; Goudappagouda; Raj, K. V.; Kurungot, S.; Babu, S. S.J Am Chem Soc. 2019, 141, 14950.
[62] Yang S.; Yang C.; Dun C.; Mao H.; Khoo R. S.H.; Klivansky, L. M.; Reimer, J. A.; Urban, J. J.; Zhang, J.; Liu, Y.J Am Chem Soc. 2022, 144, 9827.
[63] Vilciauskas L.; Tuckerman M. E.; Bester G.; Paddison S. J.; Kreuer K. D.Nat. Chem. 2012, 4, 461.
[64] Wang S.; Tang X.; Yang K.; Chen B.; Zhang K.; Xu H.; Wang W.; Zhang G.; Gu C.Macromol. Rapid Commun. 2023, 44, e2200678.
[65] Lu Z.; Yang C.; He L.; Hong J.; Huang C.; Wu T.; Wang X.; Wu Z.; Liu X.; Miao Z.; Zeng B.; Xu Y.; Yuan C.; Dai L.J Am Chem Soc. 2022, 144, 9624.
[66] Shi B.; Pang X.; Li S.; Wu H.; Shen J.; Wang X.; Fan C.; Cao L.; Zhu T.; Qiu M.; Yin Z.; Kong Y.; Liu Y.; Zhang M.; Liu Y.; Pan F.; Jiang Z.Nat. Commun. 2022, 13, 6666.
[67] Chandra S.; Kundu T.; Kandambeth S.; Babarao R.; Marathe Y.; Kunjir S. M.; Banerjee R.J Am Chem Soc. 2014, 136, 6570.
[68] Tao S.; Zhai L.; Dinga Wonanke, A. D.; Addicoat, M. A.; Jiang, Q.; Jiang, D.Nat. Commun. 2020, 11, 1981.
[69] Wu X.; Hong Y.; Xu B.; Nishiyama Y.; Jiang W.; Zhu J.; Zhang G.; Kitagawa S.; Horike S.J Am Chem Soc. 2020, 142, 14357.
[70] Yang Y.; He X.; Zhang P.; Andaloussi Y. H.; Zhang H.; Jiang Z.; Chen Y.; Ma S.; Cheng P.; Zhang Z.Angew Chem Int Ed Engl. 2020, 59, 3678.
[71] Im Y. K.; Lee D. G.; Noh H. J.; Yu S. Y.; Mahmood J.; Lee S. Y.; Baek J. B.Angew Chem Int Ed Engl. 2022, 61, e202203250.
[72] Tao S.; Jiang D.Angew Chem Int Ed Engl. 2024, 63, e202408296.
[73] Zou W.; Jiang G.; Zhang W.; Zhang L.; Cui Z.; Song H.; Liang Z.; Du L.Adv. Funct. Mater. 2023, 33, 2213642.
[74] Pan Y.; Shan Z.; Liu Z.; Su J.; Zhang G.CrystEngComm. 2025, 27: 111.
[75] Chandra S.; Kundu T.; Dey K.; Addicoat M.; Heine T.; Banerjee R.Chem. Mater. 2016, 28, 1489.
[76] Gomes A. D.S.; Dutra Filho, J. C.Int J Hydrogen Energ. 2012, 37, 6246.
[77] Ma H.; Liu B.; Li B.; Zhang L.; Li Y. G.; Tan H. Q.; Zang H. Y.; Zhu G.J Am Chem Soc. 2016, 138, 5897.
[78] Ren X.-Y.; Song J.-B.; Zhang G.-Q.; Kong Y.-R.; Zhang H.; Qiao Q.; Luo H.-B.; Zhang J.; Liu J.-L.; Ren X.-M.ACS Mater. Lett. 2024, 6, 4036.
[79] Yin Y.; Li Z.; Yang X.; Cao L.; Wang C.; Zhang B.; Wu H.; Jiang Z.J Power Sources. 2016, 332, 265.
[80] Zhang L.; Gao Z.; Kong Y.; Xing N.; Pang X.; Liu Z.; Yao Z.; Zhu S.; Wu H.; Jiang Z.J. Membr. Sci. 2024, 708, 123088.
[81] Zhou B.-L.; Chen L.Acta Chim. Sinica 2015, 73, 487(in Chinese)
(周宝龙, 陈龙. 化学学报, 2015, 73, 487.)
文章导航

/