In this work, a two-dimensional metal organic framework (MOF) Co(SCN)2 (pyz)2 with pore structure was synthesized by liquid-phase diffusion method. The MOF has good adsorption ability for lithium polysulfides and can suppress shuttle effect. By combining it with polypropylene (PP) to form a multifunctional isolation film for lithium sulfur batteries, excellent electrical performance has been demonstrated. Firstly, the preparation of MOF: A mixture of Co(SCN)2 (3mg) and water(1mL) were mixed in a 3 mL small glass bottle; a mixture of pyrazine (10mg) and acetone(2mL) were mixed in a 10 mL small glass bottle. Then opened the small bottle and put it into the large bottle, and sealed the large bottle. After standing at room temperature for 12 days, single crystals (Co(SCN)2(pyz)2) could be obtained. Then a mixture of Co(SCN)2(pyz)2 (5 mg) and polyvinylidene fluoride (PVDF) (1mg) were mixed in a glass bottle, added 6 mL of methanol, sonicate for 3 hours, and filtered under reduced pressure onto a polypropylene (PP) membrane. Placed the composite membrane in a constant temperature oven at 60 ℃ for 12 hours, and then used a slicer to make it into a fixed size. Mixed sublimated sulfur powder and Super-P carbon black in a mass ratio of 7:3 and ground them (S/PC). Dried them in an oven at 155 ℃, then weighed 360mg of S/PC and added it to 800mg of a 5 % PVDF/NMP (NMP=N-methylpyrrolidone) mixed solution. Stirred at room temperature for 12 hours at a speed of 350 r/min. Then, the mixed solution was evenly applied onto a 150 μm aluminum foil using a homogenizer, placed in a 60 ℃ constant temperature oven for 12 hours, and then sliced using a slicer to obtain a sulfur positive electrode sheet. Then assemble the battery in the order of negative electrode shell, spring sheet, gasket, lithium sheet, electrolyte (1M LITFSI, DOL/DME=1:1, 1% LiNO3), separation composite membrane(the side with MOF material in contact with the sulfur positive electrode), sulfur positive electrode sheet, and positive electrode shell. The electrolyte was 25 μL. After assembly, let it stand at room temperature for 12 hours before testing. In constant current testing, during the 0.1C long cycle test, the initial discharge specific capacity of PC-10Co-PP lithium sulfur battery (2060.48 mA·hg-1) was much higher than that of PC-PP lithium sulfur battery (883.77 mA·hg-1); At a rate of 1 C, the initial discharge specific capacity (1095 mA·hg-1) of PC-10Co-PP lithium sulfur battery is also much higher than that of PC-PP, showing excellent performance improvement, and the coulombic efficiency remained stable, indicating their cycling stability and high service life. This result indicated that porous MOF materials had great potential for application in lithium sulfur batteries, expanding the scope of MOF material applications.
[1] Xu J.;Zeng J.Huang,J.Appl. Energy 2024, 368,123434.
[2] Wang W.;Yuan B.;Sun Q.Wennersten,R. Journal of Energy Storage 2022, 52,104812.
[3] Semmelmann L.;Konermann M.;Dietze D.Staudt,P. Energy Policy 2024, 194,114343.
[4] May G. J.;Davidson A.Monahov,B. Journal of Energy Storage 2018, 15, 145.
[5] Vangapally N.;Penki T. R.;Elias Y.;Muduli S.;Maddukuri S.;Luski S.;Aurbach D. J. Power Sources 2023, 579,233312.
[6] Sajjad M.;Zhang J.;Zhang S.;Zhou J.;Mao Z.Chen,Z. The Chemical Record 2023, 24,e202300315.
[7] Niu H.;Zhang N.;Lu Y.;Zhang Z.;Li M.;Liu J.;Zhang N. Journal of Energy Storage 2024, 88,111666.
[8] Wang M.;Song Z.;Bi J.;Li H.;Xu M.;Gong Y.;Zhou Y. Battery Energy 2023, 2,2023006.
[9] Chen D.;Zhao Q.;Zheng Y.;Xu Y.;Chen Y.;Ni J.Zhao,Y. Sensors 2023, 23,5609.
[10] Liao Z.;Lv D.;Hu Q.Zhang,X. Energies 2024, 17,3668.
[11] Capková D.;Kazda T.;Čech O.;Király N.;Zelenka T.;Čudek P.;Sharma A. Journal of Energy Storage 2022, 51,104419.
[12] Tang H.;Hu M.;Li D.;Zhu J.;Chen J.Liu,N.J. Electroanal. Chem. 2025, 979,118923.
[13] Wang T.;He J.;Zhu Z.;Cheng X. B.;Zhu J.;Lu B.Wu,Y. Adv. Mater. 2023, 35,2303520.
[14] Lin B.;Zhang Y.;Li W.;Huang J.;Yang Y.;Or S. W.;Xing Z. eScience 2024, 4,100180.
[15] Guo,J.;Zhang,Y.X.;Ren,J,Y.;Chen,Z.;Zhang,M.G.;Li,Z.L. Rare Metal Mat Eng 2023,8,2943 (in Chinese). (郭锦,张怡轩,任家友,陈展,张敏刚,李占龙,稀有金属材料与工程,2023,8,2943)
[16] Yin,X.J.;Sun,X.;Zhao,C.H.;Jiang,B.;Zhao,C.Y.;Zhang,N.Q. Chem J Chinese U 2022,43,20220076 (in Chinese). (尹肖菊,孙逊,赵程浩,姜波,赵晨阳,张乃庆,高等学校化学学报,2022,43,20220076)
[17] Wei Z.;Zhang N.;Feng T.;Wu F.;Zhao T. Chen,R.Chem. Eng. J. 2022, 430,132678.
[18] Quan K.;Zhang J.;Lin W.;Tong Q.;Yan R.;Ye D.;Weng J. J. Electrochem. Soc. 2022, 169,120519.
[19] Yamada A. Advanced Science 2024, 11,2401739.
[20] Guo Y.;Niu Q.;Pei F.;Wang Q.;Zhang Y.;Du L.;Zhang Y. Energy & Environmental Science 2024, 17, 1330.
[21] Xiong Y.;Jin L.;Li Q.;Hong S.;Liu L.;Li J.;Cai J. ACS Applied Energy Materials 2024, 7, 3718.
[22] Jin G.;Zhang J.;Dang B.;Wu F.Li,J. Frontiers of Chemical Science and Engineering 2021, 16, 511.
[23] Bai S.;Liu X.;Zhu K.;Wu S.Zhou,H. Nature Energy 2016, 1.
[24] Luo, J.Zheng, J.Ionics 2020, 26, 3809.
[25] Zhang, Z.-P.Wang, S. J. Power Sources 2025, 629,235950.
[26] Han L.;Wang L.;Chen Z.;Kan Y.;Hu Y.;Zhang H.He,X. Adv. Funct. Mater. 2023, 33,2300892.
[27] Li Z.;Hou L. P.;Zhang X. Q.;Li B. Q.;Huang J. Q.;Chen C. M.;Liu Q. B. Battery Energy 2022, 1,202200006.
[28] Mao L.;Zou Y.;Yang R.;Fan C.;Dong X.;Yan Y.;Zhong L. Materials Today Communications 2023, 36,106814.
[29] Hou L.-P.;Li X.-Y.;Bi C.-X.;Chen Z.-X.;Li Z.;Su L.-L.;Shi P. J. Power Sources 2022, 550,232144.
[30] Huang Y.;Yang H.;Gao Y.;Chen G.;Li Y.;Shi L.Zhang,D. Materials Chemistry Frontiers 2024, 8, 1282.
[31] Li Q.;Liu H.;Wu F.;Li L.;Ye Y.Chen,R. Angew. Chem., Int. Ed. 2024, 63,e202404554.
[32] Liu J.;Zhang Y.;Zhou J.;Wang Z.;Zhu P.;Cao Y.;Zheng Y. Adv. Funct. Mater. 2023, 33,2302055.
[33] Tao T.;Lu S.;Fan Y.;Lei W.;Huang S.Chen,Y. Adv. Mater. 2017, 29,1700542.
[34] Zhang J.;Wang Y.;Zhou Z.;Chen Q.Tang,Y. Materials 2023, 16,1635.
[35] Wang X.;Wang Y.;Wu F.;Jin G.;Li J.Zhang,Z.Appl. Surf. Sci. 2022, 596,153628.
[36] Zhang C.;Fei B.;Yang D.;Zhan H.;Wang J.;Diao J.;Li J.Adv. Funct. Mater. 2022, 32,202201322.
[37] Yang R.;Wang F.;Cui W.-e.;Chen, W.;Lei, T.;Chen, D.;Chen, D.Energy Storage Materials 2025, 75,104030.
[38] Liang X.;Zhao D.-Q.;Huang Q.-Q.;Liang S.;Wang L.-L.;Hu L.;Liu L.-L. Rare Metals 2024, 43, 4263.
[39] Zhou L.;Pan H.;Yin G.;Xiang Y.;Tan P.;Li X.;Jiang Y. Adv. Funct. Mater. 2024, 34,2314246.
[40] Yan K.;Shen C.;Wang H.;Tao F.;Zhou C.;Dong C.;Zhang G. ACS Appl. Mater. Interfaces 2023, 15, 29094.
[41] Yang P.;Qiang J.;Chen J.;Zhang Z.;Xu M.Fei,L. Angew. Chem., Int. Ed. 2024, 64,e202414770.
[42] Chen C.;Zhang M.;Chen Q.;Duan H.Liu,S. The Chemical Record 2023, 23,202200278.
[43] Ngo N. M.;Nguyen M. H.;Song, S.-W.Park S. Mater. Lett. 2025, 382,137835.
[44] Liu Y.;Wu F.;Hu Z.;Zhang F.;Wang K.;Li L.Chen,R. Angew. Chem., Int. Ed. 2024, 63,e202402624.
[45] Cheng Z.;Lian J.;Zhang J.;Xiang S.;Chen B.Zhang,Z. Advanced Science 2024, 11,2404834.
[46] Luo Y.-H.;Chen C.;He C.;Zhu Y.-Y.;Hong D.-L.;He X.-T.;An P.-J. ACS Appl. Mater. Interfaces 2018, 10, 28860.
[47] Zhou, J.Sun, A. Chem. Eng. J. 2024, 488,150719.
[48] Wang T.;He J.;Cheng X.-B.;Zhu J.;Lu B.Wu,Y. ACS Energy Letters 2022, 8, 116.
[49] Zhang W.;He X.He,C.J. Colloid Interface Sci. 2025, 678, 540.
[50] Ma B.;Gao Y.;Niu M.;Luo M.;Li H.;Bai Y.Sun,K. Solid State Ionics 2021, 371,115750.