[1] a) Arya N.; Jagdale A. Y.; Patil T. A.; Yeramwar S. S.; Holikatti S. S.; Dwivedi J.; Shishoo C. J.; Jain, K. S. Eur. J. Med. Chem.2014, 74, 619-656; b) Galletti, P.; Giacomini, D. Curr. Med. Chem. 2011, 18, 4265-4283; c) Khan, M. A.; Houck, D. R.; Gross, A. L.; Zhang, X. L.; Cearley, C.; Madsen, T. M.; Kroes, R. A.; Stanton, P. K.; Burgdorf, J.; Moskal, J. R. Inter. J. Neuropsychoph. 2018, 21 , 242-254; d) Chevolot, L.; M. Gajhede, A. M. C.; Larsen, C.; Anthoni, U.; Christophersen, C. J. Am. Chem. Soc. 1985, 107, 4542-4543; e) Mehta, P. D.; Sengar, N. P. S.; Pathak, A. K. Eur. J. Med. Chem. 2010, 45, 5541-5560; f) Sun, C. X.; Lin, X. C.; Weinreb, S. M. J. Org. Chem. 2006, 71, 3159-3166.
[2] For reviews and examples about synthesis of β-lactams and spiro β-lactams see: a) Alves N. G.; Alves A. J. S.; Soares M. I. L.; Pinho eMelo, T. M. V. D. Adv. Synth. Catal.2021, 363, 2464-2501; b) Carreira, E. M.; Fessard, T. C. Chem. Rev. 2014, 114, 8257-8322; c) Singh, G. S.; D’hooghe, M.; De Kimpe, N. Tetrahedron 2011, 67, 1989-2012; d) Bari, S. S.; Bhalla, A. Top. Heterocycl. Chem. 2010, 22, 49-99; e) Ross, C. P.; T, Lectka. Chem. Rev. 2014, 114, 7930-7953; f) Pharande, S. G. Synthesis 2021, 53, 418-446. g) Zhou, T.; Jiang, M. X.; Yang, X.; Yue, Q.; Han, Y. Q.; Ding, Y.; Shi, B. F. Chinese. Journal. of. Chemistry. 2020, 38, 242-246. h) Han, Y. Q.; Zhou, T. Chinese. Journal. of. Chemistry. 2020, 38, 527-528.
[3] For reviews about Staudinger cycloaddition, see: a) Alcaide B.; Almendros P.; Aragoncillo C. Chem. Rev.2007, 107, 4437-4492; b) Cossıo, F. P.; Arrieta, A.; Sierra, M. A. Acc. Chem. Res. 2008, 41, 925-936(c) Brandi, A.; Cicchi, S.; Cordero, F. M.Chem. Rev. 2008, 108, 3988-4035; d) Singh, G. S.; Sudheesh, S. Arkivoc 2014, 337-385.
[4] For a book and selected examples see: a) Shi M.; Wei Y.; Zhao M.-X.; Zhang, J. Organocatalytic Cycloaddtions for Synthesis of Carbo- and Heterocycles.2018, Wiley-VCH Verlag Gmbh & Co. KgaA; b) Zhang, Y.-R.; He, L.; Wu, X.; Shao, P.-L.; Ye, S.Org. Lett. 2008, 10, 277-280; c) He, M.; Bode, J. W. J. Am. Chem. Soc. 2008, 130, 418-419; d) Zhang, H.-M.; Gao, Z.-H.; Ye, S. Org. Lett. 2014, 16, 3079-3081.
[5] For reviews about the Kinugasa reaction, see: a) Khangaraot R. K.; Kaliappan, K. P. Eur. J. Org. Chem.2013, 7644-7677; b) Stecko, S.; Furman, B.; Chmielewski, M.Tetrahedron 2014, 70, 7817-7844; c) Qiu, K.; Li, J.; Ma, H.; Zhou, W.; Cai, Q. Acta. Chim. Sinica. 2023, 81, 42-63; d) Brunelli, F.; Russo, C.; Giustiniano, M.; Tron, G. C. Chem. Eur. J. 2024, 30, e202303844.
[6] Kinugasa M.; Hashimoto S.J. Chem. Soc. Chem. Commun. 1972, 466-467.
[7] Miura M.; Enna M.; Okura K.; Nomura, M. J. Org. Chem.1995, 60, 4999-5004.
[8] For selected examples of racemic Kinugasa reactions, see: a) Okuro K.; Enna M.; Miura M.; Nomura, M. J. Chem. Soc., Chem. Commun. 1993,1107-1108; b) McKay, C. S.; Kennedy, D. C.; Pezacki, J. P.Tetrahedron Lett. 2009, 50, 1893-1896; c) Basak, A.; Chandra, K.; Pal, R.; Ghosh, S. C. Synlett 2007, 1585-1588; d) Pal, R.; Basak, A. Chem. Commun. 2006, 2992-2994; e) Hosseini, A.; Schreiner, P. R. Org. Lett. 2019, 21, 3746-3749.
[9] For selected examples of asymmetric Kinugasa reactions, see: a) Lo M. M.-C.; Fu, G. C. J. Am. Chem. Soc.2002, 124, 4572-4573; b) Ye, M.-C.; Zhou, J.; Huang, Z.-Z.; Tang, Y. Chem. Commun. 2003, 2554-2455; c) Ye, M.-C.; Zhou, J.; Tang, Y. J. Org. Chem. 2006, 71, 3576-3582; d) Chen, Z.; Lin, L.; Wang, M.; Liu, X.; Feng, X. Chem.-Eur. J. 2013, 19, 7561-7567; e) Takayama, Y.; Ishii, T.; Ohmiya, H.; Iwai, T.; Schwarzer, M. C.; Mori, S.; Taniguchi, T.; Monde, K.; Sawamura, M. Chem.-Eur. J. 2017, 23, 8400-8404; f) Michalak, M.; Stodulski, M.; Stecko, S.; Mames, A.; Panfil, I.; Soluch, M.; Furman, B.; Chmielewski, M. J. Org. Chem. 2011, 76, 6931-6936; g) Wolosewicz, K.; Michalak, M.; Adamek, J.; Furman, B. Eur. J. Org. Chem. 2016, 2212-2219; h) Xu, C.; Yang, Y.; Wu, Y.; He, F.; He, H.; Deng, P.; Zhou, H. RSC Adv. 2020, 10, 18107-18114. i) Wang, L. X.; Xu, Z. H. Chinese. Journal. of. Organic. Chemistry. 2022, 42, 3912-3914.
[10] a) Ding L. K.; Irwin, W. J. J. Chem. Soc. Perkin Trans. 1976,2382-2386; b) Santoro, S.; Liao, R.-Z.; Marcelli, T.; Hammar, P.; Himo, F.J. Org. Chem. 2015, 80, 2649-2660; c) Malig, T. C., Yu, D., Hein, J. E. J. Am. Chem. Soc. 2018, 140, 9167-9173; d) Santoro, S.; Himo, F. J. Org. Chem. 2021, 86, 10665-10671.
[11] Shintani R.; Fu, G. C. Angew. Chem. Int. Ed.2003, 42, 4082-4085.
[12] Shu T.; Zhao L.; Li S.; Chen X.-Y.; von Essen C.; Rissanen K.; Enders, D. Angew. Chem. Int. Ed.2018, 57, 10985-10988.
[13] a) Qi J.; Wei F.; Huang S.; Tung C.-H.; Xu, Z. Angew. Chem. Int. Ed.2021, 60, 4561-4565; b) Qi, J.; Wei, F.; Tung, C.-H.; Xu, Z. Angew. Chem. Int. Ed. 2021, 60, 13814-13818.
[14] Torelli A.; Choi E. S.; Dupeux A.; Perner M. N.; Lautens M. Org. Lett.2023, 25, 8520-8525.
[15] a) Zhong X.; Huang M.; Xiong H.; Liang Y.; Zhou W.; Cai, Q. Angew. Chem. Int. Ed.2022, 134, e202208323; b) Li, J.; Ma, H.; Zhong, X.; Li, S.; Zhang, J.; Ao, Y.; Zhou, W.; Cai, Q. Org. Chem. Front. 2023, 10, 5383-5388; c) Ao, Y.; Ma, H.; Gan, B.; Wang, W.; Zhang, J.; Zhou, W.; Zhang, X.; Cai, Q. Org. Lett. 2024, 26, 4761-4766; d) Li, S.; Ma, Q.; Wu, B.; Ma, H.; Zhou, W.; Cai, Q. Org. Chem. Front. 2025, 12, 167-172.
[16] For the crystal structures of 3aa and 3aa′, see CCDC (2426984, 2458837) and Supporting Information