研究论文

N-取代基对萘二酰亚胺基配位聚合物光致变色性能的调控作用

  • 张士民 ,
  • 郝朋飞 ,
  • 于炜玉 ,
  • 朱慧慧 ,
  • 杨海英 ,
  • 沈俊菊 ,
  • 付云龙
展开
  • a运城学院应用化学系 运城 044000;
    b山西师范大学化学与材料科学学院 太原 030031

收稿日期: 2025-05-14

  网络出版日期: 2025-06-30

基金资助

项目受国家自然科学基金(21171110)、山西省科技厅项目(20210302123324、201901D111275)和山西省1331项目资助

The modulation effect of N-substituents on photochromic properties of naphthalenediimide-based coordination polymers

  • Zhang Shimin ,
  • Hao Pengfei ,
  • Yu Weiyu ,
  • Zhu Huihui ,
  • Yang Haiying ,
  • Shen Junju ,
  • Fu Yunlong
Expand
  • aDepartment of Applied Chemistry, Yuncheng University, Yuncheng 044000, China;
    bSchool of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China

Received date: 2025-05-14

  Online published: 2025-06-30

Supported by

Project supported by the National Natural Science Foundation of China (21171110), Natural Science Foundation of Science and Technology Agency of Shanxi Province (20210302123324, 201901D111275), and 1331 Project of Shanxi Province.

摘要

采用溶剂热法,将N, N-二-(3-吡啶基)-1,4,5,8-萘二酰亚胺(3-DPNDI)/N, N-二-(3-吡啶酰胺基)-1,4,5,8-萘二酰亚胺(3-PANDI)、1,4-萘二羧酸(1,4-H2NDA)和硝酸镉进行组装,获得两例新型萘二酰亚胺(NDI)基配位聚合物(CPs),[Cd(3-DPNDI)(1,4-HNDA)(FA)]∙DMF (1)和[Cd(3-PANDI)2(1,4-HNDA)2]∙2DMF∙2H2O (2)(FA:甲酸根,DMF:N, N-二甲基甲酰胺)。采用单晶X-射线衍射(SCXRD)、粉末X-射线衍射(PXRD)、热重(TGA)、紫外-可见吸收光谱(UV-Vis)和电子顺磁共振(EPR)等表征手段对1和2的单晶结构以及光致变色性能进行了详细的研究。在~ 365 nm汞(Hg)灯照射下,1在5 s内呈现由黄色到深棕色的颜色变化,2在15 s内展现橙色到棕色的颜色转变,二者的饱和时间均为30 min。尽管2相对于1具有更短的电子转移通道(孤对电子-π相互作用:1中的3.471 Å和3.650 Å相对于2中的3.113 Å和3.375 Å;π-π相互作用:1中的3.678 Å、3.741 Å和3.758 Å相对于2中的3.550 Å和3.725 Å),然而1的光致变色性能优于2,这主要归因于2中较强的电荷转移(CT)降低了电子受体接受电子的能力,进而抑制了电子转移(ET)进程。本研究体现了N-取代基对电子给受体间界面关系、分子间CT、光诱导分子间ET和光致变色性能的微妙调控作用,为开发具有可控光致变色性能的配位聚合物提供了新思路。

本文引用格式

张士民 , 郝朋飞 , 于炜玉 , 朱慧慧 , 杨海英 , 沈俊菊 , 付云龙 . N-取代基对萘二酰亚胺基配位聚合物光致变色性能的调控作用[J]. 化学学报, 0 : 25050166 . DOI: 10.6023/A25050166

Abstract

In recent years, although the photochromic properties of photochromic coordination polymers (PCCPs) has been greatly improved, the regulation of photochromic performance still face tremendous challenges. Here, two photoresponsive 1,4,5,8-naphthalenediimide (NDI)-based coordination polymers (CPs), [Cd(3-DPNDI)(1,4-HNDA)(FA)]∙DMF (1) and [Cd(3-PANDI)2(1,4-HNDA)2]∙2DMF∙2H2O (2) (FA = formate, DMF = dimethyl formamide), have been designed (based on modulation effect of N-substituents) and obtained by assembly of N, -bis-(3-pyridyl)-1,4,5,8-naphthalenediimide (3-DPNDI)/N, -bis-(3-pyridinamide)-1,4,5,8-naphthalenediimide (3-PANDI), 1,4-naphthalene dicarboxylic acid (1,4-H2NDA) and cadmium nitrate tetrahydrate (Cd(NO3)2∙4H2O), respectively. The structures and photochromic properties of 1 and 2 have been detailedly investigated by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), thermogravimetry (TGA), Fourier transform infrared (FT-IR) spectra, UV-Vis absorption spectroscopy (UV-vis), kinetics curves and electron paramagnetic resonance (EPR). Interestingly, although 1 and 2 have the same two-dimension (2D) framework, they exhibit completely different photochromic behaviors. Upon exposure to ~365 nm Hg lamp, 1 displays a prominent color change from yellow to brown within 5 s, while 2 shows a color transformation from orange to brown within 15 s, both of which saturation time is 30 minutes. This phenomenon indicates that 1 has more excellent photochromic properties compared with 2. To investigate the reason, the interface relationship was analyzed carefully. Although 2 has a shorter electron transfer pathway (lone pair-π interactions: 3.471 Å and 3.650 Å in 1 vs. 3.113 Å and 3.375 Å in 2; π-π interactions: 3.678 Å, 3.741 Å and 3.758 Å in 1 vs. 3.550 Å and 3.725 Å in 2), the photochromic performance of 1 is superior to that of 2, which is mainly ascribed to the stronger charge transfer (CT) in 2 leading to the decrease of electron-accepting ability of electron acceptors and thereby inhibits the electron transfer (ET) process. This study demonstrates the subtle modulating effect of N-substituents on the interfacial relationship between electron donors and electon acceptors, intermolecular CT, photoinduced intermolecular ET and photochromic properties, which provides a new idea for the development of coordination polymers with controllable photochromic properties. Meanwhile, this work provides an effective strategy for the regulation of photochromic properties.

参考文献

[1] Laurent H. B.; Durr, H. Pure Appl. Chem.2001, 73, 639-665.
[2] Han S. D.; Hu J. X.; Wang, G. M. Coord. Chem. Rev.2022, 452, 214304.
[3] Ma J. Q.; Yang J. P.; Lu H. G.; Hou H. L.; Scalia R.; Lin, J. Sci. China: Chem.2025, 10.1007/s11426-024-2528-y.
[4] Tan Y.; Fu Z. Y.; Zeng Y.; Chen H. J.; Liao S. J.; Zhang J.; Dai, J. C. J. Mater. Chem.2012, 22, 17452-17455.
[5] Zhao J. L.; Li M. H.; Cheng Y. M.; Zhao X. W.; Xu Y.; Cao Z. Y.; You M. H.; Lin, M. J. Coord. Chem. Rev.2023, 475, 214918.
[6] Gong T.; Yang X.; Fang J. J.; Sui Q.; Xi F. G.; Gao, E. Q. ACS Appl. Mater. Interfaces2017, 9, 5503-5512.
[7] Li Y. D.; Ma L. F.; Yang G. P.; Wang, Y. Y. Angew. Chem. Int. Ed.2025, 64, e202421744.
[8] Shao Z. C.; Wu Q.; Han X.; Zhao Y. J.; Xie Q.; Wang H. F.; Hou, H. W. Chem. Commun.2019, 55, 10948-10951.
[9] Ke H.; Hu F.; Meng L. Y.; Chen Q. H.; Lai Q. S.; Li Z. C.; Huang Z. L.; Liao J. Z.; Qiu J. D.; Lu, C. Z. Chem. Commun.2020, 56, 14353-14356.
[10] Chen S. M.; Ju Y.; Zhang H.; Zou Y. B.; Lin S.; Li Y. B.; Wang S. Q.; Ma E.; Deng W. H.; Xiang S. C.; Chen B. L.; Zhang, Z. J. Angew. Chem. Int. Ed.2023, 62, e202308418.
[11] Li D. H.; Zhang X. Y.; Lv J. Q.; Cai P. W.; Sun Y. Q.; Sun C.; Zheng, S. T. Angew. Chem. Int. Ed.2023, 62, e202312706.
[12] Li L.; Yu Y. T.; Zhang N. N.; Li S. H.; Zeng J. G.; Hua Y.; Zhang, H. Coord. Chem. Rev.2024, 500, 215526.
[13] Shi Y. S.; Yang D. D.; Zheng H. W.; Liang Q. F.; Fang Y. H.; Xiao T.; Zheng X. J.Inorg. Chem. 2022, 61, 15973-15982.
[14] Pan Q. Y.; Sun M. E.; Zhang C.; Li L. K.; Liu H. L.; Li K. J.; Li H. Y.; Zang, S. Q. Chem. Commun.2021, 57, 11394-11397.
[15] Xu G.; Guo G. C.; Wang M. S.; Zhang Z. J.; Chen W. T.; Huang, J. S. Angew. Chem. Int. Ed.2007, 46, 3249-3251.
[16] Guha S.; Saha, S. J. Am. Chem. Soc.2010, 132, 17674-17677.
[17] Matsunaga Y.; Goto K.; Kubono, K. Sako K.; Shinmyozu, T. Chem. Eur. J.2014, 20, 7309-7316.
[18] Hao P. F.; Xu Y.; Shen J. J.; Fu, Y. L. Dyes Pigm.2021, 186, 108941.
[19] Li G. P.; Xie H. F.; Hao P. F.; Fu Y. L.; Zhang K.; Shen J. J.; Wang, Y. Y. Inorg. Chem.2022, 61, 6403-6410.
[20] Zhang S. M.; Liu X. X.; Hao P. F.; Li G. P.; Shen J. J.; Fu Y. L. Inorg. Chem. 2023, 62, 14912-14921.
[21] Yu T. L.; Hao P. F.; Shen J. J.; Li, H. H. Fu, Y. L. Dalton Trans.2016, 45, 16505-16510.
[22] Sun C.; Wang M. S.; Li P. X.; Guo, G. C. Angew. Chem. Int. Ed.2017, 56, 554-558.
[23] Shen J. J.; Kang X. L.; Hao, P. F. Fu, Y. L. Inorg. Chem. Front.2020, 7, 4865-4871.
[24] Hao P. F.; Wang W. P.; Zhang, L. F. Shen, J. J.; Fu, Y. L. Inorg. Chem. Front.2019, 6, 287-292.
[25] Zhang X. L.; Shen J. J.; Wang F.; Hao P. F.; Fu, Y. L. Dyes Pigm.2019, 162, 815-820.
[26] Hao P. F.; Gao B. H.; Li G. P.; Shen J. J.; Fu, Y. L. Inorg. Chem. Front.2022, 9, 2852-2861.
[27] Yang X. D.; Chen C.; Zhang, Y. J. Zhang, Y. J.; Cai L. X.; Tan B.; Zhang J. Dalton Trans.2016, 45, 4522-4527.
[28] Xu H. L.; Zeng X. S.; Li J.; Xu, Y. C; Qiu, H. J.; Xiao D. R. CrystEngComm,2018, 20, 2430-2439.
[29] Fu C.; Wang H. Y.; Zhang, G. S. Li, L.; Sun Y. N.; Fu J. W.; Zhang H. CrystEngComm,2018, 20, 4849-4856.
[30] Zhu H. H.; Hao P. F.; Shen Q.; Shen J. J.; Li G. P.; Zhao G. Z.; Xing H. Y.; Fu Y. L. CrystEngComm,2021, 23, 3356-3363.
[31] Chhapoliya M.; Singh, D. Materials Today Chem.2025, 44, 102563.
[32] Hu H.; Zhang Y. Y.; Ma H.; Yang Y. C.; Mei S.; Li J.; Xu J. F.; Zhang, X. Angew. Chem. Int. Ed.2023, 41, e202308513.
[33] Zhang S. M.; Hao P. F.; Li, G. P. Shen, J. J.; Fu, Y. L. Dyes Pigm.2023, 220, 111677.
[34] Zhang S. M.; Hao P. F.; Zhang Y. F.; Li, G. P. Shen, J. J.; Yang H. Y.; Fu, Y. L. Inorg. Chem. Front.2025, 12, 3919-3926.
[35] Zhang S. M.; Hao P. F.; Zhang Y. F.; Li, G. P. Shen, J. J.; Fu, Y. L. Inorg. Chem. Front.2024, 11, 1226-1237.
[36] Park S. H.; Lee J. Y.; Jeong H. Y.; Bae S. G.; Kang J. G.; Moon D. H.; Park J. H. Chem,2022, 8, 1-18.
[37] Zheng S. T.; Wu T.; Zuo F.J. Am. Chem. Soc. 2021, 134, 1934.
[38] Liu J. J.; Xia S. B.; Liu D.; Hou J. Y.; Suo H. B.; Cheng, F. X. Dyes Pigm.2020, 177, 108269.
[39] Pan J.Q.; Wei, H. R.; Chen, Y. R.; Jia, M. Z.; Tan, B.; Zhang, J. Angew. Chem. Int. Ed. 2024, e202412790.
[40] Yu W. Y.Master Dissertation, Shanxi Normal University, Taiyuan, 2022 (in Chinese).
(于炜玉, 硕士论文, 山西师范大学, 太原, 2022.)
文章导航

/