贵金属Pt凭借其卓越的C-H键活化能力及较低的C-C键断裂倾向被广泛用于丙烷脱氢反应。但传统Pt基催化剂在丙烷脱氢反应过程中积碳快速沉积会覆盖活性位点导致催化剂失活,且频繁再生会引发活性位结构不可逆改变,造成永久性失活。因此高活性、高稳定性Pt基催化剂的开发是关键。本研究采用共浸渍法,以三氯化铁为Fe前驱体,将Pt与不同负载量(0.1-2.0 wt%)的Fe共同负载于Silicalite-1分子筛,制备了PtFe/Silicalite-1(PtFe/S-1)系列催化剂,并对其丙烷脱氢性能展开研究。结果显示,Fe的引入能有效增强Pt与载体相互作用,使Pt物种分散度提高,从而形成具有高稳定性的小尺寸Pt物种。同时Fe通过电子转移调控Pt的电子结构,从而提高丙烯选择性。Fe负载量对催化性能影响显著,低负载时催化剂活性低、稳定性差,高负载则因副反应导致初始丙烯选择性下降,而Pt1.0Fe/S-1催化剂综合性能最优,初始丙烷转化率为59.8%,6 h后仍保持52.9%,丙烯选择性从89.1%提升至96.4%,表明适量Fe(1.0 wt%)可通过提高Pt分散度、调控Pt电子性质,实现催化活性与稳定性的平衡,为高效丙烷脱氢催化剂的设计提供了重要参考。
Noble metal Pt is widely applied in propane dehydrogenation reactions due to its excellent ability to activate C-H bonds and its relatively low tendency to break C-C bonds. However, in the course of propane dehydrogenation reactions catalyzed by traditional Pt-based catalysts, the rapid deposition of coke can cover the active sites, which in turn leads to the deactivation of the catalyst. Furthermore, frequent regeneration will trigger irreversible changes in the structure of the active sites, resulting in permanent deactivation. Therefore, the development of Pt-based catalysts with high activity and high stability is of crucial significance. In this work, PtFe/Silicalite-1 (PtFe/S-1) catalysts with different Fe loadings (ranging from 0.1 to 2.0 wt%) were prepared by co-impregnation method, and their performance in propane dehydrogenation was investigated. The results indicate that the introduction of Fe can effectively strengthen the interaction between Pt and the support, enhance the dispersion of Pt species, and thus form small-sized Pt species with high stability. At the same time, Fe regulates the electronic structure of Pt through electron transfer, thereby improving the selectivity towards propylene. The loading amount of Fe has a significant impact on the catalytic performance: when the loading is low, the catalyst exhibits low activity and poor stability; when the loading is high, the initial propylene selectivity decreases due to side reactions. Among them, the Pt1.0Fe/S-1 catalyst shows the highest propane dehydrogenation performance, with the initial propane conversion of 59.8%, which still remains at 52.9% after 6 hours, and the propylene selectivity increases from 89.1% to 96.4%. This finding demonstrates that an appropriate amount of Fe (1.0 wt%) can achieve a balance between catalytic activity and stability by improving Pt dispersion, regulating the electronic properties of Pt, thus providing an important reference for the design of efficient propane dehydrogenation catalysts.
[1] Sun M.; Zhai S.; Weng C. J.Mol. Catal. 2024, 558, 114029.
[2] Gambo Y.; Adamu S.; Abdulrasheed A. A. Appl. Catal. A: Gen. 2021, 609, 117914.
[3] Wang W. X.; Shan Y. O.; Song J. X.Chem. J. Chin. Univ. 2025, 46, 130.(in Chinese). (王文欣,单译欧,宋佳欣,等,高等学校化学学报,2025, 46, 130.)
[4] Sattler J. J.H. B.; Ruiz Martinez, J.; Santillan, J. E.Chem. Rev. 2014, 114, 10613.
[5] Liu H. T.; Li H. Q.; Yang W. J. Acta Chim. Sin. 2009, 67, 1749.(in Chinese). (柳海涛,李会泉,杨玮娇,等,化学学报,2009, 67, 1749.)
[6] Sun Q.; Wang N.; Fan Q.Angew. Chem. 2020, 132, 19618.
[7] Wang Y.; Hua Z. P.; Lv X.J. Catal. 2020, 385, 61.
[8] Dai Y.; Wang K. J.; Zhang Y. Y.Low Carbon Chem. & Chem. Eng. 2025, 50, 106(in Chinese). (代怡,王凯杰,张耀远,等,低碳化学与化工,2025, 50, 106.)
[9] Hong X. S.; Wu X.; Song L.Chem. Ind. Eng. Prog. 2024, 43, 5517.(in Chinese). (洪学思,吴省,宋磊,等,化工进展,2024, 43, 5517.)
[10] Li C. Y.; Wang G. W.Chem. Soc. Rev. 2021, 50, 4359.
[11] Song S.; Yang K.; Zhang P.ACS Catal. 2022, 12, 5997.
[12] Zhang H. D.; Lan X. Y.; Cheng P.Acta Chim. Sin. 2023, 81, 100.(in Chinese). (张红丹,兰欣雨,程鹏,化学学报,2023, 81, 100.)
[13] Zeng L.; Cheng K.; Sun F. F.Science 2024, 383, 998.
[14] Xu Z.; Gao M.; Wei Y.Nature 2025, 643, 691.
[15] Liu D.; Hu H.; Yang Y.Catal. Today 2022, 402, 161.
[16] Qiu Y.; Jing F. L.; Luo S. Z.Petrochem. Technol. 2020, 45, 8.(in Chinese). (邱易,敬方梨,罗仕忠,天然气化工 (C1 化学与化工), 2020, 45, 8.)
[17] Shen S. S.; Liu X. H.; Guo Y.Acta Phys. -Chim. Sin. 2023, 39, 85.(in Chinese). (沈姗姗,刘晓晖,郭勇,物理化学学报,2023, 39, 85.)
[18] Ji D.; Su Y.; Liu T.J. Mol. Catal. 2007, 4, 371.(in Chinese). (季东,苏怡,刘涛,分子催化,2007, 4, 371.)
[19] Li P.; Zheng Y. N.; Liu Z. K.Acta Phys. -Chim. Sin. 2025, 41, 97.(in Chinese). (李佩,郑跃楠,刘占凯,等,物理化学学报,2025, 41, 97.)
[20] Wang X.; Xu Y. H.Acta Pet. Sin.(Pet. Process.) 2025, 41, 1034.(in Chinese). (王新,许友好,石油学报 (石油加工), 2025, 41, 1034.)
[21] Thommes M.; Kaneko K.; Neimark A. V.Pure Appl. Chem. 2015, 87, 1051.(IUPAC Technical Report)
[22] Zhang J.; Tang X.; Yi H.Appl. Catal. A: Gen. 2022, 630, 118467.
[23] Cheng Q.; Li G.; Yao X.J. Am. Chem. Soc. 2023, 145, 5888.
[24] Chen J.; Huang W.; Bao S.RSC Adv. 2022, 12, 27746.
[25] Zhao Z. C.; Li X.; Liu X.ACS Catal. 2024, 14, 4478.
[26] Yang Z.; Li H.; Zhou H.J. Am.Chem. Soc. 2020, 142, 16429.
[27] Liu Y. X.; Hu H. M.; Fan X. Q.Chem. J. Chin. Univ. 2025, 46, 78.(in Chinese). (刘奕萱,胡慧敏,范晓强,等,高等学校化学学报,2025, 46, 78.)
[28] Sun K.; Fan F.; Xia H.J. Phys.Chem. C 2008, 112, 16036.
[29] Signorile M.; Bonino F.; Damin A.J. Phys. Chem. C 2016, 120, 18088.
[30] Liu M.; Yang L.; Liu T.J. Mater. Chem. A 2017, 5, 8608.
[31] Xue F.; Wang J.; Li P.ChemSusChem 2025, 18, 202402408.
[32] Bian K.; Zhang G.; Zhu,J. ACS Catal. 2022, 12, 6559.
[33] Jing F.; Lv X.; Pi Y.J. Mol. Catal. 2025, 572, 114768.
[34] Wolf M.; Raman N.; Taccardi N.ChemCatChem 2020, 12, 1085.
[35] Jiao J. H.; Yang Y.; Yuan M. J.Chem. Synth. 2025, 5, 19.