化学学报 >

0 25080273 - 25080273

DOI: https://doi.org/10.6023/A25080273

研究论文

低温自还原法制备UVA荧光粉(Ba[B8O11(OH)4]:Eu2+)

  • 张雨欣 ,
  • 史欣蕊 ,
  • 李飒英 ,
  • 李连庆 ,
  • 张宏淑 ,
  • 薛颖颖 ,
  • 姜志洁 ,
  • 赵洋 ,
  • 梁攀
展开
  • 陕西学前师范学院 生物食品与化学学院,陕西 西安 710100
*E-mail: liangpan@snnu.edu.cn

收稿日期: 2025-08-06

  网络出版日期: 2025-10-15

基金资助

国家自然科学基金青年项目(22003035); 陕西省科技新星项目(2023KJXX-076); 陕西学前师范学院创新团队; 国家级大创项目(202314390018)的支持

Preparation of Ba[B8O11(OH)4]:Eu2+ high efficiency UVA phosphor by low-temperature self-reduction method

  • Zhang Yuxin ,
  • Shi Xinrui ,
  • Li Saying ,
  • Li Lianqing ,
  • Zhang Hongshu ,
  • Xue Yingying ,
  • Jiang Zhijie ,
  • Zhao Yang ,
  • Liang Pan
Expand
  • College of Biology, Food and Chemistry, Shaanxi Xueqian Normal University, Xi'an, 710100, China

Received date: 2025-08-06

  Online published: 2025-10-15

Supported by

The project is supported by the National Natural Science Foundation of China (22003035); the Shaanxi Science and Technology Young Star Project (2023KJXX-076); the Innovation Team of Shaanxi Xueqian Normal University; and the National Training Program of Innovation and Entrepreneurship for Undergraduates (202314390018).

摘要

本研究采用低温自还原法制备了一种新型窄带长波紫外(UVA)荧光粉Ba[B8O11(OH)4]:Eu2+(BBH: Eu2+)。通过一系列表征手段对其结构和荧光性能进行了研究。扫描电镜结果显示,该荧光粉呈现出规则的长六边形片状结构,其长度约为1.5 μm,宽度约为0.6 μm。漫反射实验表明,BBH在紫外区表现出高反射特性。密度泛函理论计算表明,该材料是一种直接带隙材料,带隙值为5.55 eV。TGA实验表明,该荧光粉的热分解温度为420 ℃。BBH: Eu2+的激发光谱在200至360 nm的范围内呈现宽峰,峰值位于277 nm;发射光谱范围为300至420 nm,发射峰位于385 nm,半峰宽为35 nm,具有典型的窄带UVA发射特征。此外,对其荧光寿命、量子产率和热稳定性也进行了研究,并分析了热猝灭机理。结合X射线光电子谱与热释光谱的实验结果,探讨了Eu3+在BBH基质中的自还原机理。本研究不仅提供了一种制备Eu2+激活荧光粉的新方法,还成功研发了一种高性能的UVA窄带荧光粉,该荧光粉在防伪、医学等领域具有广阔的应用前景。

本文引用格式

张雨欣 , 史欣蕊 , 李飒英 , 李连庆 , 张宏淑 , 薛颖颖 , 姜志洁 , 赵洋 , 梁攀 . 低温自还原法制备UVA荧光粉(Ba[B8O11(OH)4]:Eu2+)[J]. 化学学报, 0 : 25080273 -25080273 . DOI: 10.6023/A25080273

Abstract

In this study, a novel and highly efficient narrow-band long-wave ultraviolet (UVA) phosphor, Ba[B8O11(OH)4]: Eu2+(BBH: Eu2+), was synthesized via a low-temperature self-reduction method. The structural and luminescent properties of the phosphor were systematically characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), diffuse reflectance spectroscopy (DR), density functional theory (DFT) calculations, photoluminescence spectra (PL), thermoluminescence spectra (TL), and decay time curves (DT). The SEM results revealed that the phosphor exhibits a well-defined hexagonal plate-like morphology with dimensions of approximately 1.5 μm in length and 0.6 μm in width. The DR experimental results demonstrate that BBH exhibits high reflectivity in the ultraviolet region. DFT calculations indicate that this material is a direct-bandgap semiconductor with a bandgap energy of 5.55 eV. TGA results indicate that the thermal decomposition of BBH occurs at 420 oC. The excitation spectrum of BBH: Eu2+ features a broad peak between 200 to 360 nm, peaking at 277 nm, while the emission spectrum spans from 300 to 420 nm, peaking at 385 nm with a full width at half maximum (FWHM) of 35 nm, exhibiting typical narrow-band UVA emission features. The quantum yield of BBH: 2%Eu2+ was determined to be 34.6%, and the corresponding decay time was measured as 727 ns. When the temperature increased to 100 °C, the luminescence intensity of BBH: 2%Eu2+ decreased to 48.9% of its initial value at room temperature, indicating relatively poor thermal stability. The underlying cause can be attributed to the material's large Stokes shift, which reaches 10127 cm-1 (108 nm). This large Stokes shift significantly enhances the electron-phonon coupling effect, thereby negatively impacting thermal stability. The observed thermal quenching behavior is primarily governed by the thermally activated cross-relaxation mechanism. Based on the XPS and TL data, the self-reduction mechanism of Eu3+ within the BBH matrix was elucidated. This research not only introduces a new approach for synthesizing Eu2+-activated phosphors but also successfully develops a high-performance UVA narrow-band phosphor with significant potential for applications in anti-counterfeiting, medical diagnostics, and other fields.

参考文献

[1] Zhang L.; Zhang Y.; Xu S.; Zhao R.; Zhai W.; Wang J. Small2024, 20, 2403360.
[2] Fang S.; Lang T.; Cai M.; Han, T. J. Alloy. Compd.2022, 902, 163825.
[3] Hu S.; Gu C.; Lu S.; Hong Y.; Wu Q.; Fu M.; Xiong P.; Wang Y. Dyes Pigments2023, 215, 111216.
[4] Gutiérrez-Martín F.; Fernández-Martinez F.; Díaz P.; Colón C.; Alonso-Medina, A. J. Alloy. Compd.2010, 501, 193.
[5] Liu L.; Guo H.; Wang L.; Shi Q.; Qiao J.; Cui C. e.; Huang, P. J. Alloy. Compd.2024, 1009, 176852.
[6] Lv X.; Liang Y.; Zhang Y.; Chen D.; Shan X.; Wang X.-J. Light-Sci Appl.2024, 13, 253.
[7] Wang C.; Jin Y.; Zhang J.; Li X.; Wu H.; Zhang R.; Yao Q.; Hu, Y. Chem. Eng. J.2023, 453, 139558.
[8] Belsare P. D.; Moharil S. V.; Joshi C. P.; Omanwar, S. K. AIP Conference Proceedings2011, 1391, 194.
[9] Zhang Y.; Chen D.; Wang W.; Yan S.; Liu J.; Liang, Y. Inorg. Chem. Front.2020, 7, 3063.
[10] Hemne P. S.; Kunghatkar R. G.; Dhoble S. J.; Moharil S. V.; Singh V. Luminescence2017, 32, 260.
[11] Hosseini H. E.; Cao J.; Ding Y.; Ghadamyari M.; Galusek D.; Klement R.; Wondraczek, L. Op.t Mater. Express.2024, 14, 2384.
[12] Zhou X.; Qiao J.; Zhao Y.; Han K.; Xia, Z. Sci. China Mater.,2022, 65, 1103.
[13] Kunghatkar R. G.; Dhoble S. J.; Hemne P. S. Luminescence2016, 31, 1503.
[14] Liang Y.; Liu F.; Chen Y.; Sun K.; Pan Z. Dalton T2016, 45, 1322.
[15] Hariyani S.; Sójka M.; Setlur A.; Brgoch J.Nat. Rev.Mater. 2023. 8, 759-.
[16] Zhuo Y.; Brgoch J.J. Phys. Chem. Lett.2021, 12, 764.
[17] Zhuo Y.; Mansouri Tehrani A.; Oliynyk A. O.; Duke A. C.; Brgoch J. Nat. Commun.2018, 9, 4377.
[18] Liang P.; Zhang H.; Wang J.; Xue Y.; Li S.; Li X.; Wan Z.; Luo J.; Li L.; Huang H.; Liu Z. Laser-Photon Rev.2025, 19, 2402304.
[19] Liang P.; Zhang H.; Xue Y.; Li S.; Huang H.; Li X.; Lin X.; Zhang Y.; Li L.; Liu, Z. J. Rare Earth.2025, 43, 1150.
[20] Liang P.; Zhang H.; Huang H.; Li S.; Zhang X.; Wang Y.; Li L.; Liu, Z. Acta Chim. Sinica2023, 81, 371.(in Chinese)(梁攀, 张宏淑, 黄宏升, 李飒英, 张笑恬, 王英, 李连庆, 刘志宏, 化学学报,2023, 81#, 371.)
[21] Liang P.; Li L.; Shen T.; Lian W.; Liu, Z. J. Rare Earth.2023, 41, 349.
[22] Liang P.; Lian W. L.; Liu, Z. H. Chem Commun2021, 57, 3371.
[23] Liang P.; Lian W. L.; Liu, Z. H. Chem-European J2021, 27, 13819.
[24] Chen L.; Zhang H.Y.; Qing Q.; Song F.; Li L.P.; Leng, Z.H. Acta Chim. Sinica,2024, 82, 894.(in Chinese)(陈蕾, 张瀚月, 卿青, 宋芳, 李莉萍, 冷稚华. 化学学报, 2024, 82#, 894.)
[25] Wang H. L.; Mei L. F.; Su K.; Liu J. Y.; Wang Q.; Wu Z. J.; Guo Q. F.; Liao, L. B. Laser Photonic Rev.2025, 19, 2400665
[26] Teng W.; Dong H.; Hu C.; Yang X.; Wang J.; Liang X.; Yang B.; Ru J.; Teng B.; Zhong D. J. Lumin.2024, 269, 120524.
[27] Jiang X.; Guo Y.; Wang L.; Zhang Q. Ceram. Int.2023, 49, 28729.
[28] Ding S.; Li H.; Li J.; Wang, Y. ACS Appl. Electron. Mater.2021, 3, 2774.
[29] Wang H.; Su K.; Mei L.; Guo Q.; Liao L.Inorg. Chem. 2023, 62, 12468.
[30] Lu R.; Zhang X.; Fang Y.; Wu X.; Jia M.; Wang K.; Wu J.; Li Q.; Sun, Z. Laser & Photonics Reviews Laser Photonics Rev.,2024, 18, 2400409.
[31] Wang H.; Su K.; Ma B.; Wang Y.; Mei L.; Guo Q.; Liao, L. Chem. Eng. J. 2023, 478, 147361.
[32] Sun H.-Y.; Sun W.; Huang Y.-X.; Mi, J.-X. Z. Anorg. Allg. Chem.2010, 636, 977.
[33] Wang Y. H.; Zhang Q.; Li Z. B.; Kang R. T.; Liu Z. Q.; Wang, H. Y. Chin. J. Lumin.2023, 44, 1186. (in Chinese)(王育华, 张强, 李泽彬, 康润天, 刘政强, 王浩洋, 发光学报,# 2023, 44#, 1186.)
[34] Wang S. X.; Song Z.; Liu, Q. L. Chin. J. Lumin.2022, 43, 1319.(in Chinese)(王淑欣, 宋振, 刘泉林, 发光学报,# 2022, 43#, 1319.)
[35] Li M.Z.; Li X.; He H. B.; Song F.; Leng Z.H.Acta Chim. Sinica 2024, 82, 1241.(in Chinese)(李明昭, 李想, 何洪波, 宋芳, 冷稚华. 化学学报, 2024, 82#,1241.)
[36] Fang M. H.; Leaño Jr J L.; Liu, R. S. ACS Energy Letters,2018, 3, 2573.
[37] Strobel P.; Maak C.; Weiler V.; Schmidt P. J.; Schnick, W. Angewandte Chemie International Edition,2018, 57, 8739.
[38] Zhao M.; Ge Y.; Li Y.; Song X.; Xia Z.; Zhang X. Light-Sci. Appl.2024, 13, 266.
[39] Zhao F.; Cai H.; Song Z.; Liu Q. Chem. Mater.2021, 33, 3621.
[40] Zhou Z.; Zhu H.; Huang X.; She Y.; Zhong Y.; Wang J.; Liu M.; Li W.; Xia, M. Chem. Eng. J.2022, 433, 134079.
[41] Zong Q.; Zhao D.; Zhang R.-J.; Yao Q.-X.; Jia L.; Yu, M.-H. J. Mate.r Chem. C2024, 12, 664.
[42] Zhou X.; Ning L.; Qiao J.; Zhao Y.; Xiong P.; Xia Z. Nat.Commun.,2022, 13, 7589.
[43] Sójka M.; Hariyani S.; Lee N.; Brgoch J. Chem. Mater.2023, 35, 6491.
[44] Lin Y.-C.; Bettinelli M.; Karlsson M. Chem. Mater.2019, 31, 3851.
[45] Qiao J. W.; Zhao J.; Liu Q. L.; Xia, Z. G. J. Rare Earth.2019, 37, 565.
[46] Zhao M.; Zhang Q.; Xia, Z. Acc. Mater. Res.2020, 1, 137.
[47] Yang Y.; Zhang P.; Miao X.; Lin Z.; Li S.; Liu, W. Laser Photonics Rev.,2025, 19, 2400982.
[48] Fang M.-H.; Bao Z.; Huang W.-T.; Liu R.-S. Chem. Rev.2022, 122, 11474.
[49] Perdew J. P.; Yue, W. Phys. Rev. B1986, 33, 8800.
[50] Perdew, J. P. Phys. Rev. B1986, 33, 8822.
[51] Langreth D. C.; Perdew, J. P. Phys. Rev. B1980, 21, 5469.
[52] Monkhorst H. J.; Pack, J. D. Phys. Revi. B1976, 13, 5188.
[53] Kresse G.; Hafner, J. J. Phys- Condens. Mat.1994, 6, 8245.
[54] Kresse G.; Furthmüller, J. Phys. Rev. B1996, 54, 11169.
文章导航

/