化学学报 >

0 25090309 - 25090309

DOI: https://doi.org/10.6023/A25090309

研究评论

等离子体放电在生命化学起源中的研究进展

  • 甘定伟 ,
  • 周儒森 ,
  • 应见喜 ,
  • 周仁武
展开
  • (a西安交通大学, 电工材料电气绝缘全国重点实验室, 西安 710049)
    (b宁波大学, 钱学森天体化学协同研究中心, 宁波 315211)
*E-mail: yingjianxi@nbu.edu.cn; renwu.zhou@xjtu.edu.cn

收稿日期: 2025-09-12

  网络出版日期: 2025-10-15

基金资助

国家自然科学基金青年学生基础研究项目(524B2109); 国家自然科学基金面上项目(52377160).

Research Progress of Plasma Discharge in the Chemical Evolution of Life

  • Dingwei Gan ,
  • Rusen Zhou ,
  • Jianxi Ying ,
  • Renwu Zhou
Expand
  • (aState Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China)
    (bQian Xuesen Collaborative Research Center for Astrochemistry, Ningbo University, Ningbo 315211)

Received date: 2025-09-12

  Online published: 2025-10-15

Supported by

Project supported by the National Natural Science Foundation of China (524B2109, 52377160).

摘要

生命的起源和演化是人类面临的终极谜题之一。传统化学起源学说涉及惰性气体分子活化、简单分子向复杂功能分子演化、生物分子同手性以及遗传密码起源等关键问题。“米勒-尤里” 放电实验以来,“等离子体放电” 被认为是生命分子起源的可能场景之一。等离子体作为一种非平衡态的高能环境,可通过高能电子、离子和自由基等活性物种驱动分子裂解与重组,为复杂有机分子的形成、分子复杂化等过程提供重要的物理化学基础。此外,特定的物理化学界面(如气液界面)可为等离子体场景下分子的富集、组装等提供关键微环境。本文综述了等离子体放电在生命化学起源中的研究进展,旨在为探索生命起源的复杂化学过程提供新的研究视角。

本文引用格式

甘定伟 , 周儒森 , 应见喜 , 周仁武 . 等离子体放电在生命化学起源中的研究进展[J]. 化学学报, 0 : 25090309 -25090309 . DOI: 10.6023/A25090309

Abstract

Origin and evolution of life are among humanity’s ultimate enigmas. Classical chemical-origin hypotheses confront several key challenges, including the activation of chemically inert molecular gases, the transformation of simple molecules into complex functional ones, the emergence of biomolecular homochirality, and the origin of the genetic code. Since the pioneering Miller-Urey discharge experiment, plasma discharges have been regarded as one plausible setting for the emergence of life’s molecules. As a high-energy, non-equilibrium environment, plasma can drive molecular fragmentation and recombination through reactive species such as energetic electrons, ions, and radicals, thereby providing crucial physicochemical underpinnings for the formation of complex organic molecules and the progressive increase of molecular complexity. Recent decades have witnessed significant advances in this field. Laboratory simulations have shown that plasma discharges in N₂-CH₄ or CO-H₂ atmospheres can efficiently generate hydrogen cyanide, formaldehyde, and other small molecules that serve as precursors of amino acids, nucleobases, and sugars. Beyond monomer synthesis, plasma environments have been found to promote polymerization reactions leading to oligopeptides and nucleic acid fragments, demonstrating a feasible route from simple molecules to biopolymers. Moreover, plasma-driven chemistry at interfaces such as microdroplets, aerosols, and underwater bubbles provides unique microenvironments that concentrate reactants and stabilize products, thereby facilitating molecular assembly and enhancing the plausibility of prebiotic reactions. Plasma studies have also offered insights into fundamental questions such as the origin of homochirality. Experimental evidence indicates that asymmetric reaction pathways may be favored under plasma irradiation when combined with mineral surfaces or circularly polarized light, suggesting possible mechanisms for chiral selection. Furthermore, coupling plasma discharge with catalytic platforms or microfluidic devices has recently emerged as a promising direction, allowing controlled studies across scales that mimic primitive Earth environments. This review summarizes the state of the art in plasma-based prebiotic chemistry, highlights key challenges including reproducibility, selectivity, and integration with geological settings, and outlines future perspectives. We propose that interdisciplinary approaches—combining plasma physics, geochemistry, catalysis, and space chemistry—will be essential to unravel how plasma contributed to the chemical origins of life. Such studies not only enrich our understanding of life’s beginnings on Earth but may also provide new frameworks for assessing the potential for life in extraterrestrial environments such as Titan or exoplanetary atmospheres.

参考文献

[1] So Much More to Know.Science, 2005, 309: 78-102
[2] Darwin C. Letter to Joseph Dalton Hooker (1 February1871). The Life and Letters of Charles Darwin, 1871, 2: 119-120
[3] Oparin A I.The Origin of Life.Moscow: Moskovskoe Obshchestvo Ispytatelei Prirody, 1924
[4] Haldane J B S. The Origin of Life. The Rationalist Annual, 1929, 148-153:
[5] Bernal J D.The Physical Basis of Life.Proc. Phys. Soc. 1947, 62(4):
[6] Calvin M.Chemical Evolution: Life is a logical consequence of known chemical principles operating on the atomic composition of the universe.Am. Sci., 1975, 63: 169-177
[7] Peretó Juli, Bada Jeffrey L., Antonio. L.Charles Darwin and the Origin of Life.Origins Life Evol. Biospheres, 2009, 39: 395-406
[8] Li Y L, Sun S.The origin of life on Earth
(in Chinese). Chin Sci Bull, 2016, 61: 3065-3078 (李一良, 孙思. 地球生命的起源. 科学通报, 2016, 61: 3065-3078)
[9] Jiang H J, Underwood T C, Bell J G, Lei J, Gonzales J C, Emge L, Tadese L G, Abd El-Rahman M K, Wilmouth D M, Brazaca L C, Ni G, Belding L, Dey S, Ashkarran A A, Nagarkar A, Nemitz M P, Cafferty B J, Sayres D S, Ranjan S, Crocker D R, Anderson J G, Sasselov D D, Whitesides G M. Mimicking lightning-induced electrochemistry on the early Earth.Proc. Natl. Acad. Sci. U. S. A., 2024, 121: e2400819121
[10] Martin W, Baross J, Kelley D, Russell M J.Hydrothermal vents and the origin of life.Nat. Rev. Microbiol., 2008, 6: 805-814
[11] Zhao Y F, Hua Y J, Li Y L, Sun Y Q, Yao W, Zheng H Q, Hao J H, Ying J X, Chen Y Z, Tian B.Strategic Study for the Development of Space Life
(in Chinese). Chin. J. Space Sci., 2024, 44(3): 387-399(赵玉芬, 华跃进, 李一良, 孙野青, 姚伟, 郑慧琼, 郝记华, 应见喜, 陈宇综, 田兵. 空间生命学科发展战略研究. 空间科学学报, 2024, 44(3): 387-399)
[12] Wu W R, Wang C, Liu Y, Qin L P, Lin W, Ye S Y, Li H, Shen F, Zhang Z.Frontier scientific questions in deep space exploration
(in Chinese). Chin Sci Bull, 2023, 68: 606-627 (吴伟仁, 王赤, 刘洋, 秦礼萍, 林巍, 叶生毅, 李晖, 沈芳, 张哲. 深空探测之前沿科学问题探析. 科学通报, 2023, 68:606-627)
[13] He Y J.The problem on the origin of homochirality in nature
(in Chinese). Chin Sci Bull, 2017, 62: 2465-2472 (何裕建. 自然界中同型手性起源的难题. 科学通报, 2017, 62: 2465-2472)
[14] Vladimir P.Chirality in chemistry.Science, 1976, 193: 17-24
[15] Zhao Z, Cheng S W, Mao Y Z, Ying J X, Tian S Y, Zhao Y F.Primary Research of the Relationship between Genetic Codons and Amino Acids Based on the Technology of Electronic Tongue.Acta Chimica Sinica, 2021, 79(11): 1372-1375.
(赵钊, 程时文, 毛岳忠, 应见喜, 田师一, 赵玉芬. 基于电子舌技术的氨基酸与密码子关系的初步研究. 化学学报, 2021, 79: 1372-1375)
[16] Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life.Chem. Rev., 2014, 114: 285-366
[17] Ying J, Fu S, Li X, Feng L, Xu P, Liu Y, Gao X, Zhao Y.A plausible model correlates prebiotic peptide synthesis with the primordial genetic code.Chem. Commun., 2018, 54: 8598-8601
[18] Gan D W, Lei X M, Zhou R W, Fu S S, Sun J, Zhou R S, Ostrikov K, Zhao Y F, Ying J X.A plausible pathway to prebiotic peptides via amino acid amides on the primordial Earth.Earth Planet. Phys., 2024, 8: 868-877
[19] Stolar T, Grubešić S, Cindro N, Meštrović E, Užarević K, Hernández J G.Mechanochemical Prebiotic Peptide Bond Formation.Angew. Chem., Int. Ed., 2021, 60: 12727-12731
[20] Gan D W, Ying J X, Zhao Y F. Prebiotic Chemistry: The Role of Trimetaphosphate in Prebiotic Chemical Evolution. Front. Chem., 2022, 10:
[21] Maruyama S, Kurokawa K, Ebisuzaki T, Sawaki Y, Suda K, Santosh M.Nine requirements for the origin of Earth's life: Not at the hydrothermal vent, but in a nuclear geyser system.Geosci. Front., 2019, 10: 1337-1357
[22] Ferus M, Nesvorný D, Šponer J, Kubelík P, Michalčíková R, Shestivská V, Šponer J E, Civiš S.High-energy chemistry of formamide: a unified mechanism of nucleobase formation.Proc. Natl. Acad. Sci. U. S. A., 2015, 112: 657-662
[23] Hess B L, Piazolo S, Harvey J.Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth.Nat. Commun., 2021, 12: 1535
[24] Miller S L.A production of amino acids under possible primitive earth conditions.Science, 1953, 117: 528-529
[25] Velikhov E P, Kovalev A S, Rakhimov A T.Physical phenomena in a gas-discharge plasma.Moscow Izdatel Nauka, 1987
[26] Lukes P, Locke B R, Brisset J-L.Aqueous-phase chemistry of electrical discharge plasma in water and in gas-liquid environments.Plasma Chem. Catal. Gases Liq., 2012, 1: 243-308
[27] Eliasson B, Kogelschatz U.Nonequilibrium volume plasma chemical processing.IEEE Trans. Plasma Sci., 2002, 19: 1063-1077
[28] Gan D W, Hong L F, Li T Y, Zhang T Q, Wang X Y, Fan J P, Zhou R S, Liu D X, Ying J X, Cullen P J, Zhao Y F, Zhou R W.Discharge plasma for prebiotic chemistry: Pathways to life’s building blocks.Earth Planet. Phys., 2024, 8: 823-835
[29] Ring D, Wolman Y, Friedmann N, Miller S L.Prebiotic Synthesis of Hydrophobic and Protein Amino Acids.Proc. Natl. Acad. Sci. U. S. A., 1972, 69: 765-768
[30] Plankensteiner K, Reiner H, Schranz B, Rode B M.Prebiotic Formation of Amino Acids in a Neutral Atmosphere by Electric Discharge.Angew. Chem., Int. Ed., 2004, 43: 1886-1888
[31] Janda M, Morvova M, Machala Z, Morva I.Study of Plasma Induced Chemistry by DC Discharges in CO2/N2/H2O Mixtures Above a Water Surface.Origins Life Evol. Biospheres, 2008, 38: 23-35
[32] Ferus M, Nesvorný D, Šponer J, Kubelík P, Michalčíková R, Shestivská V, Šponer J E, Civiš S.High-energy chemistry of formamide: A unified mechanism of nucleobase formation.Proc. Natl. Acad. Sci. U. S. A., 2015, 112: 657-662
[33] Ferus M, Pietrucci F, Saitta A M, Knížek A, Kubelík P, Ivanek O, Shestivska V, Civiš S.Formation of nucleobases in a Miller-Urey reducing atmosphere.Proc. Natl. Acad. Sci. U. S. A., 2017, 114: 4306-4311
[34] Managadze G.Plasma and collision processes of hypervelocity meteorite impact in the prehistory of life.Int. J. Astrobiol., 2010, 9: 157-174
[35] Hörst S M, Yelle R V, Buch A, Carrasco N, Cernogora G, Dutuit O, Quirico E, Sciamma-O'Brien E, Smith M A, Somogyi A, Szopa C, Thissen R, Vuitton V. Formation of Amino Acids and Nucleotide Bases in a Titan Atmosphere Simulation Experiment.Astrobiology, 2012, 12: 809-817
[36] Miyakawa S, Murasawa K-I, Kobayashi K, Sawaoka A B.Abiotic Synthesis of Guanine with High-Temperature Plasma.Origins Life Evol. Biospheres, 2000, 30: 557-566
[37] Svatopluk C, Rafał S, Bartłomiej M S, Daniel S, Ondřej I, Antonín K, Petr K, Jiří Š, Martin F, Judit E Š.TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth.Sci. Rep., 2016, 6: 23199
[38] Cleaves H J, Chalmers J H, Lazcano A, Miller S L, Bada J L.A reassessment of prebiotic organic synthesis in neutral planetary atmospheres.Orig Life Evol. Biospheres, 2008, 38: 105-115
[39] Gan D W, Guo Y T, Lei X M, Zhang M, Fu S S, Ying J X, Zhao Y F.Urea-mediated warm ponds: Prebiotic formation of carbamoyl amino acids on the primordial Earth.Earth Planet. Sci. Lett., 2023, 607: 118072
[40] Ehrenfreund P, Rasmussen S, Cleaves J, Chen L.Experimentally tracing the key steps in the origin of life: The aromatic world.Astrobiology, 2006, 6: 490-520
[41] Fried S D, Fujishima K, Makarov M, Cherepashuk I, Hlouchova K.Peptides before and during the nucleotide world: an origins story emphasizing cooperation between proteins and nucleic acids.J. R. Soc. Interface, 2022, 19: 20210641
[42] Hayashi Y, Diono W, Takada N K, Hideki, Goto M.Glycine Oligomerization by Pulsed Discharge Plasma over Aqueous Solution under Atmospheric Pressure.ChemEngineering, 2018, 2: 17
[43] Joaquín Criado-Reyes, Bruno M Bizzarri, Juan Manuel García-Ruiz, Raffaele Saladino, Mauro. E D. The role of borosilicate glass in Miller-Urey experiment.Sci. Rep., 2021, 11: 21009
[44] Jenewein C, Maíz-Sicilia A, Rull F, González-Souto L, García-Ruiz J M. Concomitant formation of protocells and prebiotic compounds under a plausible early Earth atmosphere.Proc. Natl. Acad. Sci. U. S. A., 2025, 122: e2413816122
[45] Laurent G, Lacoste D, Gaspard P.Emergence of homochirality in large molecular systems.Proc. Natl. Acad. Sci. U. S. A., 2021, 118: e2012741118
[46] Lee T D, Yang C N.Question of Parity Conservation in Weak Interactions.Phys. Rev., 1956, 104: 254-258
[47] Bonner W A.Parity violation and the evolution of biomolecular homochirality.Chirality, 2000, 12: 114-126
[48] Keszthelyi L.Origin of the homochirality of biomolecules. Q. Rev. Biophys., 1995, 28: 473-507
[49] Meierhenrich U J, Nahon L, Alcaraz C, Bredehöft J H, Hoffmann S V, Barbier B, Brack A.Asymmetric Vacuum UV photolysis of the Amino Acid Leucine in the Solid State.Angew. Chem., Int. Ed., 2005, 44: 5630-5634
[50] Pavlov V A, Klabunovskii E I.The origin of homochirality in nature: a possible version.Russ. Chem. Rev., 2015, 84: 121
[51] Gan D, Huang J, Hong L, Jiang H, Wang X, Zhou R, Sun J, Zhou R.Catalyst-free urea synthesis via plasma-driven direct coupling of CO2 and N2 under ambient conditions.Green Chem., 2025, 27: 8811-8817
[52] Gan D W, Hong L F, Yuan S, Zhu M Y, Gao Y T, Zhang T Q, Li T Y, Chen B H, Dzimitrowicz A, Jamroz P, Cullen P J, Zhou R.Energy-efficient production of plasma-activated water: insights into controllable peroxynitrite chemistry.Green Chem., 2025, 27: 3715-3726
[53] Hong L, Gan D, Wang X, Gao Y, Jiang H, Yuan S, Huang J, Sun J, Zhou R, Zhou R.Solvated Electrons-Induced CO2 Valorization via Plasma-Liquid Interface for Sustainable Organic Acid Production.ACS Sustainable Chem. Eng., 2025, 13,16058-16070
[54] Lou S T, Ouyang Z Q, Zhang Y, Li X J, Hu J, Li M Q, Yang F J.Nanobubbles on solid surface imaged by atomic force microscopy. J.Vac. Sci. Technol., B:Nanotechnol. Microelectron.:Mater., Process., Meas., Phenom.2000, 18: 2573-2575
[55] Zhou R W, Zhang T Q, Zhou R S, Wang S, Mei D H, Mai-Prochnow A, Weerasinghe J, Fang Z, Ostrikov K, Cullen P J.Sustainable plasma-catalytic bubbles for hydrogen peroxide synthesis.Green Chem., 2021, 23: 2977-2985
[56] Zhang T Q, Knezevic J, Zhu M Y, Hong J M, Zhou R S, Song Q, Ding L Y, Sun J, Liu D X, Ostrikov K K, Zhou R W, Cullen P J.Catalyst-Free Carbon Dioxide Conversion in Water Facilitated by Pulse Discharges.J. Am. Chem. Soc., 2023, 145: 28233-28239
[57] Knezevic J, Zhang T Q, Zhou R W, Hong J, Zhou R S, Barnett C, Song Q, Gao Y T, Xu W P, Liu D X, Proschogo N, Mohanty B, Strachan J, Soltani B, Li F, Maschmeyer T, Lovell E C, Cullen P J.Long-Chain Hydrocarbons from Nonthermal Plasma-Driven Biogas Upcycling.J. Am. Chem. Soc., 2024, 146: 12601-12608
[58] Gan D W, Huang J W, Hong L F, Jiang H X, Wang X R, Zhou R S, Sun J, Zhou R W.Catalyst-Free Urea Synthesis via Plasma-Driven Direct Coupling of CO? and N? under Ambient Conditions.Green Chem., 2025
[59] Wei W, Chu F J, Chen G R, Zhou S W, Sun C R, Feng H R, Pan Y J.Prebiotic Formation of Peptides Through Bubbling and Arc Plasma.Chem-Eur J, 2024, 30: e202401809
[60] Wang J S, Tang X, Li Y, Qiu X Q.Observation and micro-electrochemical characterisation for micro-droplets in initial marine atmospheric corrosion.Corros. Eng., Sci. Technol., 2016, 51: 308-312
[61] Banerjee S, Gnanamani E, Yan X, Zare R N.Can all bulk-phase reactions be accelerated in microdroplets?Analyst, 2017, 142: 1399-1402
[62] Yan X, Bain R M, Cooks R G.Organic Reactions in Microdroplets: Reaction Acceleration Revealed by Mass Spectrometry.Angew. Chem., Int. Ed., 2016, 55: 12960-12972
[63] Wei Z, Li Y, Cooks R G, Yan X.Accelerated Reaction Kinetics in Microdroplets: Overview and Recent Developments.Annu. Rev. Phys. Chem., 2020, 71: 31-51
[64] Lee J K, Samanta D, Nam H G, Zare R N.Micrometer-Sized Water Droplets Induce Spontaneous Reduction.J. Am. Chem. Soc., 2019, 141: 10585-10589
[65] Jin S H, Chen H, Yuan X, Xing D, Wang R j, Zhao L l, Zhang D m, Gong C, Zhu C h, Gao X f, Chen Y y, Zhang X x. The Spontaneous Electron-Mediated Redox Processes on Sprayed Water Microdroplets.JACS Au, 2023, 3: 1563-1571
[66] Zhong X, Chen H, Zare R N.Ultrafast enzymatic digestion of proteins by microdroplet mass spectrometry.Nat. Commun., 2020, 11: 1049
[67] Huang K H, Chen K, Morato N M, Sams T C, Dziekonski E T, Cooks R G.High-throughput microdroplet-based synthesis using automated array-to-array transfer.Chem. Sci., 2025, 16: 7544-7550
[68] Meng Y F, Xia Y, Xu J H, Zare R N. Spraying of water microdroplets forms luminescence and causes chemical reactions in surrounding gas. Sci. Adv., 2025, 11: eadt8979
[69] Xing D, Meng Y, Yuan X, Jin S, Song X, Zare R N, Zhang X.Capture of Hydroxyl Radicals by Hydronium Cations in Water Microdroplets.Angew. Chem., Int. Ed., 2022, 61: e202207587
[70] Mohajer M A, Basuri P, Evdokimov A, David G, Zindel D, Miliordos E, Signorell R.Spontaneous formation of urea from carbon dioxide and ammonia in aqueous droplets.Science, 2025, 388: 1426-1430
[71] Nam I, Lee J K, Nam H G, Zare R N.Abiotic production of sugar phosphates and uridine ribonucleoside in aqueous microdroplets.Proc. Natl. Acad. Sci. U. S. A., 2017, 114: 12396-12400
[72] Holden D T, Morato N M, Cooks R G.Aqueous microdroplets enable abiotic synthesis and chain extension of unique peptide isomers from free amino acids.Proc. Natl. Acad. Sci. U. S. A., 2022, 119: e2212642119
[73] Wang W, Qiao L, He J, Ju Y, Yu K, Kan G, Guo C, Zhang H, Jiang J.Water Microdroplets Allow Spontaneously Abiotic Production of Peptides.J. Phys. Chem. Lett., 2021, 12: 5774-5780
[74] Ju Y, Zhang H, Jiang Y X, Wang W X, Kan G F, Yu K, Wang X, Liu J, Jiang J.Aqueous microdroplets promote C-C bond formation and sequences in the reverse tricarboxylic acid cycle.Nat. Ecol. Evol., 2023, 7: 1892-1902
文章导航

/