综述

硫自由基阳离子在光化学反应中的产生与应用

  • 熊雨平 ,
  • 谢文林 ,
  • 陈健强 ,
  • 吴劼
展开
  • a湖南科技大学 化学化工学院 湘潭 411201
    b台州学院 医药化工学院&高等研究院 台州 318000
    c中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
熊雨平,湖南科技大学在读博士生,硕士毕业于江西师范大学。以第一作者在Adv. Sci; Org. Lett.; Org. Chem. Front.; Chin. Chem. Lett.等期刊上发表论文6篇。
谢文林,教授、博士生导师。1990年本科毕业于湖南科技大学,2002年博士毕业于中山大学:自1990年本科毕业留校,一直在湖南科技大学从事教学和科研工作。主要从事类天然有机分子的设计、合成及生物活性研究。在Org. Lett.; Org. Chem. Front.; Chem. Commun.; Eur. J. Med. Chem.; J. Org. Chem.; Bioorg. Med. Chem. Lett. 等国际核心期刊发表 SCI 论文50余篇,授权发明专利10项。
陈健强,副教授、硕士生导师。本科毕业于南通大学;博士毕业于兰州大学(导师:许鹏飞 教授);2019年11月入职台州学院高等研究院。主要从事光化学反应研究,以第一作者或通讯作者身份在Nat. Commun.; Chem. Soc. Rev.; Adv. Sci.; ACS Catal.; Green Chem.; Org. Lett.等国际核心期刊上发表SCI论文30余篇,授权发明专利3项。
吴劼,教授、博士生导师。于2000年6月获得中科院上海有机化学研究所博士学位,之后分别先后在哈佛大学、洛克菲勒大学艾伦·戴蒙德艾滋病研究中心、VivoQuest, Inc. (纽约)从事博士后、访问学者、研究员工作。2004年回国进入复旦大学化学系担任副教授,2006年晋升为教授,博士生导师。2019年加入台州学院医药化工学院,主要从事有机合成、药物化学及相关研究工作。独立工作以来已在Nat. Commun.; J. Am. Chem. Soc.; Angew. Chem. Int. Ed.; Chem. Soc. Rev.等国际核心期刊发表SCI论文400余篇,参与编写专著四本,独立撰写专著一本,获得美国发明专利2项,中国发明专利30余项。

收稿日期: 2025-09-10

  网络出版日期: 2025-10-17

基金资助

国家自然科学基金(No.22201201),浙江省自然科学基金(LY23B020001)和湖南省自然科学基金(No.2024JJ7176)资助.

Photochemical Generation of Sulfide Radical Cations and Their Synthetic Applications

  • Xiong Yuping ,
  • Xie Wenlin ,
  • Chen Jianqiang ,
  • Wu Jie
Expand
  • aSchool of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
    bSchool of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
    cState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Received date: 2025-09-10

  Online published: 2025-10-17

Supported by

National Natural Science Foundation of China(No.22201201), Natural Science Foundation of Zhejiang Province(LY23B020001) and the Natural Science Foundation of Hunan Province(No.2024JJ7176)

摘要

近年来,自由基化学领域迎来了前所未有的发展,相关研究呈现爆发式增长。作为合成化学领域的重要分支,自由基参与的化学反应为复杂分子的构建提供了简洁高效的合成策略。根据自由基的电子特性,可以分为以下三类:中性自由基、自由基阳离子和自由基阴离子。随着近年来自由基化学的发展,中性自由基参与的反应备受关注。与之相反,离子型自由基的研究却相对滞后。由于硫醚和硫自由基阳离子在有机合成化学领域有着广泛的应用。本综述以硫自由基阳离子为切入点,详细介绍离子型自由基的产生方式和反应特点。根据其产生方式,本文细分为三个部分,分别是光催化硫醚类化合物的单电子氧化产生硫自由基阳离子,光催化噻蒽盐类化合物的S-X键均裂产生硫自由基阳离子以及吩噻嗪类光催化剂的单电子转移产生硫自由基阳离子。此外本文还对硫自由基阳离子的发展趋势和未来前景进行了简单的探讨。

本文引用格式

熊雨平 , 谢文林 , 陈健强 , 吴劼 . 硫自由基阳离子在光化学反应中的产生与应用[J]. 化学学报, 0 : 0 . DOI: 10.6023/A25090302

Abstract

The chemistry of free radicals has advanced significantly in recent years. Radical reactions provide chemists a powerful means to access synthetic pathways that were previously regarded as highly challenging or practically unfeasible. Generally, radicals can be classified into three main categories based on their electronic properties: neutral radicals, radical cations, and radical anions. With the advancement of radical chemistry, considerable efforts have been devoted to the study of neutral radicals. In contrast, the transformations of corresponding radical ions remain largely unexplored. Radical ions are commonly generated using oxidants or reductants, photochemical methods, or electrochemical methods. Sulfides and their radical cations are commonly used in synthetic chemistry. This manuscript reviews recent advances in the photochemical generation of sulfide radical cations and summarizes their synthetic applications. It is divided into three sections covering single-electron oxidation of sulfides, S-X bond homolysis of thianthrenium salts, and single-electron transfer from phenothiazine-based photocatalysts. The generated sulfide radical cations can promote C-S and C-H bond cleavage of sulfides, induce O-H bond activation of alcohols, facilitate single-electron transfer from substrates, and drive radical-radical coupling reactions. Moreover, the application of sulfide radical cations in various photocatalytic processes and their synthetic potential are also discussed. The future prospects and emerging trends in the use of sulfide radical cations in organic chemistry are further highlighted.

参考文献

[1] (a) Nicewicz D. A.; MacMillan, D. W. C. Science2008, 322, 77.(b) Lu, Y.-H.; Wu, C.; Hou, J.-C.; Wu, Z.-L.; Zhou, M.-H.; Huang, X.-J.; He, W.-M. ACS Catal. 2023, 13, 13071. (c) Ji, H.-T.; Luo, Q.-X.; Wang, K.-L.; Ouyang, W.-T.; Li, H.-X.; He, W.-M. Green Chem. 2023, 25, 7983.(d) Song H.-Y.; Jiang J.; Wu C.; Hou J.-C.; Lu Y.-H.; Wang K.-L.; Yang T.-B.; He W.-M. Green Chem.2023, 25, 3292.(e) Zhao, Y.; Xing, T.; Duan, Y.; Zhao, Q. Acta Chim. Sinica 2025, 83, 773. (in Chinese). (赵瑜, 邢彤彤, 段玉荣, 赵全庆, 化学学报,2025, 83, 773.) (f) Li, K.; Long, X.; Huang, Y.; Zhu, S. Acta Chim. Sinica 2024, 82, 658. (in Chinese). (李康葵, 龙先扬, 黄岳, 祝诗发, 化学学报,2024, 82, 658.) (g) Jiang, C.; Yin, Y.; Jiang, Z. Chin. J. Org. Chem. 2025, 45, 1614. (in Chinese). (蒋晨阳, 尹艳丽, 江智勇, 有机化学, 2025, 45, 1614.) (h) Yao, Y.; Fu, N. Chin. J. Org. Chem. 2025, 45, 1819. (in Chinese). (姚嫣, 付年凯, 有机化学, 2025, 45, 1819.). (i) Chen, J.-Q.; Zhu, G.; Wu, J. Acta Chim. Sinica 2024, 82, 190. (in Chinese). (陈健强, 朱钢国, 吴劼, 化学学报,2024, 82, 190.).
[2] (a) Prier C. K.; Rankic D. A.; MacMillan, D. W. C. Chem. Rev.2013, 113, 5322.(b) Chen, J.; Zhu, G.; Wu, J.Acta Chim. Sinica 2023, 81, 1609. (in Chinese). (陈健强, 朱钢国, 吴劼, 化学学报, 2023, 81, 1609.) (c) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem. Int. Ed. 2015, 54, 15632. (d) Ji, C.-L.; Lu, Y.-N.; Xia, S.; Zhu, C.; Zhu, C.; Li, W.; Xie, J. Angew. Chem. Int. Ed. 2025, 64, e202423113. (e) Xiao, W.; Wu, J. Chin. Chem. Lett. 2022, 34, 107637. (f) Xiao, W.; Wu, J. Org. Chem. Front. 2022, 9, 5053. (g) Hou, H.; Cheng, Y.; Chen, B.; Tung, C.; Wu, L. Chin. J. Org. Chem. 2023, 43, 1012 (in Chinese). (侯虹宇, 程元元, 陈彬, 佟振合, 吴骊珠, 有机化学, 2023, 43, 1012.). (h) Gao, G.; Li, Z.; Li, Y.; Lu, X. Chin. J. Org. Chem. 2025, 45, 1905. (In Chinese). (高根伟, 李震, 李炎, 陆熹, 有机化学, 2025, 45, 1905.) (i) Tan, Y.; Ying, J.; Yu, B.; Lu, Z. Chin. J. Org. Chem. 2025, 45, 1684. (In Chinese). (谭燕, 应佳乐, 於兵, 陆展, 有机化学, 2023, 43, 1684.). (j) Zong, Z.; Liang, P.; Yao, J.; Chen, J.-Q.; Wu, J. ACS Catal. 2025, 15, 13226.
[3] (a) Capaldo L.; Ravelli D.; Fagnoni M. Chem. Rev.2022, 122, 1875.(b) Zhao, Y.; Xia, W.Org. Biomol. Chem. 2019, 17, 4951.(c) Cao, H.; Tang, X.; Tang, H.; Yuan, Y.; Wu, J. Chem Catal. 2021, 1, 1.(d) Qin, Y.; Zhu, L.; Luo, S. Chem.Rev. 2017, 117, 9433. (e) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A.Chem.Rev. 2017, 117, 9016. (f) Chen, J.-Q.; Zhu, G.; Wu, J. Org. Chem. Front. 2024, 11, 2108.
[4] (a) Strieth-Kalthoff F.; Glorius F. Chem2020, 6, 1888.(b) Strieth-Kalthoff F.; James M. J.; Teders M.; Pitzer L.; Glorius, F. Chem. Soc. Rev.2018, 47, 7190.(c) Wang, X.; Chen, Y.; Liang, P.; Chen, J.-Q.; Wu, J. Org. Chem. Front. 2022, 9, 4328.(d) Chen, M.; Sun, W.; Yang, J.; Yuan, L.; Chen, J.-Q.; Wu, J. Green Chem. 2023, 25, 3857. (e) Zong, Z.; Yang, J.; Yuan, L.; Wang, X.; Chen, J.-Q.; Wu, J. Org. Lett. 2024, 26, 8626., 8626.
[5] (a) Wang C.-L.; Wang J.; Jin J.-K.; Li B.; Phang Y. L.; Zhang F.-L.; Ye T.; Xia H.-M.; Hui L.-W.; Su J.-H.; Fu Y.; Wang Y.-F. Science2023, 382, 1056.(b) Li W.-D.; Wu Y.; Li S.-J.; Jiang Y.-Q.; Li Y.-L.; Lan Y.; Xia, J.-B. J. Am. Chem. Soc.2022, 144, 8551.(c) Kvasovs, N.; Gevorgyan, V. Chem. Soc. Rev. 2021, 50, 2244.(d) Raviola, C.; Protti, S.; Ravelli, D.; Fagnoni, M. Green Chem. 2019, 21, 748. (e) Chen, J.-Q.; Tu, X.; Tang, Q.; Li, K.; Xu, L.; Wang, S.; Ji, M.; Li, Z.; Wu, J. Nat. Commun. 2021, 12, 5328. (f) Ji, M.; Xu, L.; Luo, X.; Jiang, M.; Wang, S.; Chen, J.-Q.; Wu, J. Org. Chem. Front. 2021, 8, 6704. (g) Chen, J.-Q.; Tu, X.; Qin, B.; Huang, S.; Zhang, J. Org. Lett. 2022, 24, 642. (h) Chen, J.-Q.; Huang, J.; Yao, J.; Wang, T.; Feng, Y.; Zhou, X.; Yang, M.; Wu, J. Org. Lett. 2025, 27, 427. (i) Yu, W.-L.; Luo, Y.-C.; Yan, L.; Liu, D.; Wang, Z.-Y.; Xu, P.-F. Angew. Chem. Int. Ed. 2019, 58, 10941. (j) Cao, J.; Liu, Y.; Wang, Z.; Liu, L. Org. Chem. Front. 2024, 11, 7098. (k) Chang, L.; An, Q.; Duan, L.; Feng, K.; Zuo, Z. Chem. Rev. 2022, 122, 2429. (l) Xiao, W.; Chen, J.-Q.; Wu, J. Chem. Soc. Rev. 2025, 54, 6832.
[6] (a) Zhang B.; Li T.-T.; Mao Z.-C.; Jiang M.; Zhang Z.; Zhao K.; Qu W.-Y.; Xiao W.-J.; Chen, J.-R. J. Am. Chem. Soc.2024, 146, 1410.(b) Xiao W.; Zhang J.; Wu J. ACS Catal.2023, 13, 15991.(c) Cuthbertson, J. D.; MacMillan, D. W. C. Nature 2015, 519, 74.
[7] (a) Yayla H. G.; Wang H.; Tarantino K. T.; Orbe H. S.; Knowles, R. R. J. Am. Chem. Soc.2016, 138, 10794.(b) Wilger, D. J.; Grandjean, J.-M. M.; Lammert, T. R.; Nicewicz, D. A. Nat. Chem. 2014, 6, 720., 8181.(d) Zhang M.; Xie J.; Zhu C. Nat. Commun.2018, 9, 3517.(e) Stache, E. E.; Ertel, A. B.; Rovis, T. Doyle, A. G. ACS Catal. 2018, 8, 11134.(f) Ruzi, R.; Liu, K.; Zhu, C.; Xie, J. Nat. Commun. 2020, 11, 3312. (g) Qiu, J.; Zhang, X.; Zheng, H.; Zhu, G. J. Am. Chem. Soc. 2025, 147,, 19004.
[8] Tanaka K.; Takamura H.; Kadota I. Tetrahedron Lett.2025, 169, 155745.
[9] (a) Berger F.; Plutschack M. B.; Riegger J.; Yu W.; Speicher S.; Ho M.; Frank N.; Ritter T. Nature2019, 567, 223.(b) Jia, H.; Häring, A. P.; Berger, F.; Zhang, L.; Ritter, T. J. Am. Chem. Soc. 2021, 143, 7623.(b) Umemoto, T.; Ishihara, S.Tetrahedron Lett. 1990, 31, 3579.(c) Koike, K.; Akita, M. Acc. Chem. Res. 2016, 49, 1937.
[10] (a) Liang J.-J.; Gu C.-L.; Kacher M. L.; Foote, C. S. J. Am. Chem. Soc.1983, 105, 4717.(b) Bonesi S. M.; Manet I.; Freccero M.; Fagnoni M.; Albini, A. Chem. Eur. J.2006, 12, 4844.(c) Lang, X.; Hao, W.; Leow, W. R.; Li, S.; Zhao, J.; Chen, X. Chem. Sci. 2015, 6, 5000.(d) Lang, X.; Leow, W. R.; Zhao, J.; Chen, X. Chem. Sci. 2015, 6, 1075. (e) Lang, X.; Zhao, J.; Chen, X. Angew. Chem. Int. Ed. 2016, 55, 4697. (f) Park, J.; Kim, S. H.; Cho, J.-Y.; Atriardi, S. R.; Kim, J.-Y.; Mardhiyah, H.; Park, B. Y.; Woo, S. K. Green Chem. 2025, 27, 3284.
[11] Wever W. J.; Cinelli M. A.; Bowers, A. A. Org. Lett.2013, 15, 30.
[12] Lebée C.; Languet M.; Allain C.; Masson G. Org. Lett.2016, 18, 1478.
[13] (a) Jarrige L.; Levitre G.; Masson, G. J. Org. Chem.2016, 81, 7230.(b) Le T.; Courant T.; Merad J.; Allain C.; Audebert P.; Masson, G. J. Org. Chem. 2019, 84, 16139. (c) Levitre G.; Audubert C.; Dumoulin A.; Goual N.; Retailleau P.; Moreau X.; Masson G. ChemCatChem2019, 11, 5723.
[14] Wan C.; Wang Y.; Lian C.; Chang Q.; An Y.; Chen J.; Sun J.; Hou Z.; Yang D.; Guo X.; Yin F.; Wang R.; Li, Z. Chem. Sci. 2022, 13,8289.
[15] Lanzi M.; Merad J.; Boyarskaya D. V.; Maestri G.; Allain C.; Masson G.Org. Lett.2018, 20, 5247.
[16] Alfonzo E.; Hande S. M.ACS Catal. 2020, 10, 12590.
[17] Knowles O. J.; Johannissen L. O.; Crisenza G. E.M.; Hay, S.; Leys, D.; Procter, D. J. Angew. Chem. Int. Ed. 2022, 61, e202212158.
[18] Hasegawa N.; Shibata K.; Hijikata H.; Sengoku T. Chem. Commun.2025, 61, 9610.
[19] Alfonzo E.; Hande S. M.Org. Lett.2021, 23, 6115.
[20] Rourke M. J.; Wang C. T.; Schull C. R.; Scheidt, K. A. ACS Catal.2023, 13, 7987.
[21] Cheng S.-Y.; Liao J.-B.; Lin Y.-M.; Gong L. Org. Lett.2023, 25, 6566.
[22] Liang Y.-X.; Gong Y.; Xu X.-C.; Yang M.; Zhao Y.-L.Org. Chem. Front. 2024, 11, 2033.
[23] Li J.; Chen J.; Sang R.; Ham W.-S.; Plutschack, M. B.; Berger, F.; Chabbra, S.; Schnegg, A.; Genicot, C.; Ritter, T. Nat. Chem., 2020, 12, 56.
[24] Sang R.; Korkis S. E.; Su W.; Ye F.; Engl P. S.; Berger F.; Ritter T.Angew. Chem.Int. Ed. 2019, 58, 16161.
[25] Xiong Y.; Zhang X.; Guo H.-M.; Wu X.Org. Chem.Front. 2022, 9, 3532.
[26] Zhang X.; Ning S.; Li Y.; Xiong Y.; Wu X.ChemCatChem., 2023, 15, e202300311.
[27] Matsukuma K.; Tayu M.; Yashiro Y.; Yamaguchi T.; Ohrui S.; Saito N.Chem. Pharm.Bull. 2023, 71, 695.
[28] Matsukuma K.; Tayu M.; Itai R.; Imai K.; Ohrui S.; Saito N.J. Org.Chem. 2025, 90, 10454.
[29] Matsukuma K.; Tayu M.; Ogino T.; Ohrui S.; Noji M.; Hayashi S.; Saito, N. Chem Asian J.2025, 20, e202401442.
[30] Hong Y.; Park C.; Jang J.; Oh M.; Kim D.; Lee S.; Hong, S. Y. J. Am. Chem. Soc.2025, 147, 19583.
[31] Zhao Y.; Yu C.; Liang W.; Patureau F. W.Org. Lett.2021, 23, 6232.
[32] Chen X.-Y.; Kuang X.; Wu Y.; Zhou J.; Wang P.Chin. J. Chem. 2023, 41, 1979.
[33] Sun K.; Ge C.; Chen X.; Yu B.; Qu L.; Yu B.Nat. Commun.2024, 15, 9693.
[34] Jia H.; Ritter T.Angew. Chem.Int. Ed. 2022, 61, e202208978.
[35] Li Y.; Liang X.; Niu K.; Gu J.; Liu F.; Xia Q.; Wang Q.; Zhang W.Org. Lett.2022, 24, 5918.
[36] Li B.; Xing D.; Li X.; Chang S.; Jiang H.; Huang L.Org. Lett.2023, 25, 6633.
[37] Luo M.; Zhu S.; Yang C.; Guo L.; Xia W. Org. Lett.2024, 26, 4388.
[38] Cheng Q.; Chen J.; Lin S.; Ritter, T. J. Am. Chem. Soc.2020, 142, 17287.
[39] Shibutani S.; Kodo T.; Takeda M.; Nagao K.; Tokunaga N.; Sasaki Y.; Ohmiya, H. J. Am. Chem. Soc.2020, 142, 1211.
[40] Shibutani S.; Nagao K.; Ohmiya H.Org. Lett.2021, 23, 1798.
[41] Nakagawa M.; Nagao K.; Ikeda Z.; Reynolds M.; Ibáñez I.; Wang J.; Tokunaga N.; Sasaki Y.; Ohmiya H. ChemCatChem2021, 13, 3930.
[42] Kobayashi R.; Shibutani S.; Nagao K.; Ikeda Z.; Wang J.; Ibáñez, I.; Reynolds, M.; Sasaki, Y.; Ohmiya, H. Org. Lett. 2021, 23, 5415.
[43] Matsuo T.; Nagao K.; Ohmiya H. Tetrahedron Lett.2022, 112, 154231.
[44] Takekawa Y.; Kodo T.; Nagao K.; Kakei H.; Takeuchi K.; Sasaki Y.; Ohmiya H.Chem. Lett.2023, 52, 41.
[45] Ota Kenji.; Nagao K.; Segawa Y.; Hata D.; Sugiyama H.; Tokunoh R.; Seki T.; Miyamoto N.; Sasaki Y.; Ohmiya H.Nat. Commun.2023, 14, 6856.
[46] Tamano T.; Sato K.; Ohmiya H.; Inagi S.Angew. Chem.Int. Ed. 2025, 64, e202507572.
[47] Kodo T.; Nagao K.; Ohmiya H.Nat. Commun.2022, 13, 2684.
文章导航

/