多级孔工程与单位点协同: 原位构建功能化MOF用于高活性C—N偶联催化
收稿日期: 2025-08-28
网络出版日期: 2025-10-28
基金资助
国家自然科学基金项目(22202067)
国家自然科学基金项目(22272018)
湖南省自然科学基金项目(2024JJ5121)
湖南省教育厅科学研究项目(23A0631)
湖南省一流应用特色学科([2022]351)
Hierarchical Pore Engineering and Single-site Synergy: In situ Construction of Functionalized MOF for Highly Active C—N Coupling
These authors contributed equally to this work.
Received date: 2025-08-28
Online published: 2025-10-28
Supported by
National Natural Science Foundation of China(22202067)
National Natural Science Foundation of China(22272018)
Hunan Provincial Natural Science Foundation of China(2024JJ5121)
Research Foundation of Education Bureau of Hunan Province, China(23A0631)
Characteristic Application Discipline of Material Science and Engineering in Hunan Province([2022]351)
氮杂环化合物是医药、材料和农业化学等领域不可或缺的结构单元. 针对传统C—N偶联催化剂效率低、底物适应性差等问题, 本研究开发了一种基于Al(BPY) MOF的新型高效催化材料. 利用Cu(BF4)2兼具刻蚀剂与金属源的双重功能, 同步实现了分级多孔的原位构筑与单原子铜位点的精准锚定. 优化后的Al(BPY)-Cu(BF4)2-0.5催化剂在Ullmann C—N偶联反应中对42种底物(包括稠环化合物、非芳香氮杂环及含P—H键底物)表现出优异普适性(产率55%~95%), 且耐受电子效应和空间位阻. 催化剂循环8次后, 活性保持率>94%, Cu浸出量<0.2 mg/L. 其高活性源于分级孔道提升的传质效率/活性位点可及性, 与单原子铜对底物的活化作用之间的协同效应.
吕灿 , 丁钰敏 , 余卓斌 , 周延涛 , 郭佳瑞 , 李杰 , 刘开建 , 欧金花 , 刘进轩 . 多级孔工程与单位点协同: 原位构建功能化MOF用于高活性C—N偶联催化[J]. 化学学报, 2026 , 84(1) : 119 -128 . DOI: 10.6023/A25080293
Nitrogen heterocycles serve as key structural components in modern pharmaceutical, materials, and agrochemical applications. Addressing the intrinsic limitations of conventional C—N coupling catalysts—particularly their poor catalytic efficiency and narrow substrate range—this investigation engineered an advanced catalytic architecture based on an Al(BPY) metal-organic framework (MOF). The synthetic route involved: (1) hydrothermal assembly of microporous Al(BPY) MOF employing 2,2'-bipyridine (BPY, rigid bidentate N-ligand) and AlCl3, followed by (2) controlled liquid-phase loading of Cu(BF4)2 as a bifunctional reagent (dual etchant and metal source). This innovative approach successfully accomplished two critical objectives concurrently: (i) in situ formation of hierarchically porous networks (pore size distribution: 1~50 nm) and (ii) atomic-level precision immobilization of mono-disperse copper active centers. Structural analysis showed $\text{BF}_{4}^{-}$ etches Al—O—C bonds forming mesopores, while Cu²⁺ coordinates with pyridinic N ensuring atomic dispersion. Rigorous evaluation of Al(BPY)-Cu(BF4)2's catalytic behavior in Ullmann C—N coupling reactions established distinct structure-activity correlations, with the Cu(BF4)2-modified catalyst exhibiting substantially superior activity relative to Cu(NO3)2-, CuCl2-, and Cu(acac)2-modified analogs. The Al(BPY)-Cu(BF4)2-0.5 demonstrated optimal catalytic performance, achieving 93% product yield under optimized reaction parameters (Cs2CO3 base, dimethylsulfoxide solvent, 120 ℃, 16 h). Notably, the catalyst displayed exceptional functional group compatibility (55%~95% yields across 42 diverse substrates including fused-ring systems, non-aromatic N-heterocycles, and P—H compounds) while maintaining remarkable tolerance toward both electronic and steric perturbations. The system successfully transcended conventional catalytic constraints by accomplishing: (i) efficient coupling of sterically demanding non-aromatic amines and (ii) pioneering MOF-mediated C—P bond formation—the first documented instance of such transformation in MOF-based catalytic systems. Furthermore, the material exhibited outstanding cycling stability, retaining >94% initial activity through 8 successive reaction cycles with negligible copper leach-ing (<0.2 mg/L). The exceptional catalytic efficiency originates from synergistic interplay between hierarchically porous channels (facilitating enhanced mass transport and active site accessibility) and atomic Cu centers (activating aryl iodides and X—H bonds).
| [1] |
|
| [2] |
(王君伟, 薛皓, 曲英瑜, 姜若楠, 闫法超, 刘会, 有机化学, 2025, 45, 151.)
|
| [3] |
(杜牧, 杨程博, 陈琦, 邓亮, 化学学报, 2024, 82, 932.)
|
| [4] |
(刘珊珊, 董微微, 李珍珍, 张瑶瑶, 李超, 焦林郁, 化学学报, 2025, 83, 479.)
|
| [5] |
(唐俊鸿, 周聪颖, 王成明, 化学学报, 2025, 83, 557.)
|
| [6] |
(刘健, 欧金花, 李泽平, 蒋婧怡, 梁荣涛, 张文杰, 刘开建, 韩瑜, 化学学报, 2023, 81, 1701.)
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
(陈健强, 朱钢国, 吴劼, 化学学报, 2024, 82, 190.)
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
(李鑫, 宋戈洋, 董建洋, 薛东, 中国科学:化学, 2024, 54, 1897.)
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
(吴丰田, 李俊, 孙艺嘉, 曾蓉, 任涵, 刘秀萍, 张彩虹, 闫芳明, 吴玲, 崔春娜, 高等学校化学学报, 2022, 43, 84.)
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
/
| 〈 |
|
〉 |