综述

核级锆的熔盐制备与回收研究进展

  • 周铭宇 ,
  • 刘乐彬 ,
  • 梅雷 ,
  • 刘雅兰 ,
  • 石伟群
展开
  • a中国科学院 高能物理研究所 核能放射化学实验室,北京 100049;
    b上海交通大学 机械与动力工程学院 核燃料循环与核材料研究所,上海 200030;
    c中国科学院大学 化学科学学院,北京 100049
周铭宇, 中国科学院高能物理研究所博士研究生, 主要 从事金属锆的熔盐电化学研究; 刘乐彬, 中国科学院高能物理研究所硕士研究生, 主要 从事干法后处理研究; 梅雷,中国科学院高能物理研究所,研究员; 主要研究方向为锕系元素化学与分离材料,致力于将超分子识别与组装的理念和方法应用于锕系固体化学和放射性核素分离化学研究,在锕系超分子配合物及其配位化学基础、基于协同识别的放射性核素分离新方法、新型锕系固相材料开发等方面开展了系列原创性工作,为解决乏燃料后处理、环境放射性污染控制与资源回用研究等领域中的关键问题提供了新思路; 以通讯/第一作者身份在Nature Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Func. Mater.等国际知名期刊发表研究论文130余篇; 目前担任中国化学会青年化学工作者委员会委员,中科院青促会化学与材料分会委员,中国核学会锕系化学与物理分会理事,并担任《核化学与放射化学》期刊编委,SmartMat、Materials Research Letters、《结构化学》等学术期刊青年编委; 刘雅兰,副研究员,中国科学院高能物理研究所; 多年来致力于氧化物乏燃料干法后处理领域,聚焦于锕-镧分离研究; 首先开展了锕、镧系氧化物在熔盐中的溶解及其电化学行为研究,随后在固态活性铝阴极上进行了锕-镧的电化学分离,并采用原位光谱技术监测了分离过程中锕、镧元素的化学种态变化,发现了铀的循环电解并将其消除,提高了电流效率; 最终成功实现了锕-镧元素的有效分离,与传统的液态Cd阴极相比将分离因子提高了两个数量级; 在此基础上,进一步总结了锕、镧氧化物在氯化物熔盐中的溶解规律,提出了利用其溶解性差异实现一步分离的新方法; 基于相关工作,在电化学领域与核能领域著名期刊Electrochim. Acta, J. Electrochem. Soc.,Electrochem. Commun.和 J. Nucl. Mater.等上共发表论文40余篇,其中第一作者及通讯作者论文20篇; 石伟群, 上海交通大学特聘教授, 国家杰出青年科学基金获得者, 长期致力于核燃料循环化学相关基础研究. 在 JACS、Angew. Chem.、Chem、Chem. Sci.、CCS Chem.、Nat. Commun.、Adv. Mater.等国际知名期刊发表SCI论文300余篇, 成果被国内外同行广泛关注和引用, 文章总引18000 余次, H 因子67 (Google Scholar), 2019~2023 年每年均入选 Elsevier 中国高被引学者榜单(核科学技术). 分别担任期刊 《Supramolecular Materials》副主编, 《Chinese Chemical Letters》、《Journal of Nuclear Fuel Cycle and Waste Technolo gy》、《International Journal of Advanced Nuclear Reactor Design and Technology》和《Journal of Nuclear Science and Technology》 的编委与国际顾问编委, 中文期刊《核化学与放射化学》编委. 现为中国核学会锕系物理与化学分会副理事长、中国有色金属学会熔盐化学与技术专业委员会副主任委员、中国化学会 核化学与放射化学专业委员会委员、中国核学会核化工分会 常务理事兼副秘书长

网络出版日期: 2026-01-04

Research Progress on the Preparation and Recovery of Nuclear-Grade Zirconium Using Molten Salts

  • Zhou Mingyu ,
  • Liu Lebin ,
  • Mei Lei ,
  • Liu Yalan ,
  • Shi Weiqun
Expand
  • a Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
    b Institute of Nuclear Fuel Cycle and Materials, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China;
    c School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Online published: 2026-01-04

摘要

核级锆是核电站反应堆的必备金属材料,具有普通商用锆材无法企及的低中子吸收截面与耐腐蚀性,兼具高经济价值与战略意义,是关乎国家能源安全的储备性资源。因此,高效经济的制备和回收核级锆受到核科学工作者们的重视。熔盐技术作为实现锆铪分离、金属锆制备及退役锆回收的重要途径,具有流程简洁、适应性强等优势。此综述概括了熔盐在核级锆全流程管理中的关键作用,包括不同熔盐体系(氟化物、氯化物及氟氯混合盐体系)在金属锆制备和回收中的应用特性分析和对比。此外,重点对熔盐中锆离子的电还原行为进行了系统的梳理,以推动核级锆的绿色冶金与循环利用。

本文引用格式

周铭宇 , 刘乐彬 , 梅雷 , 刘雅兰 , 石伟群 . 核级锆的熔盐制备与回收研究进展[J]. 化学学报, 0 : 202611 -202611 . DOI: 10.6023/A25110360

Abstract

Nuclear-grade zirconium is a critical metallic material for nuclear power plants. It boasts a low neutron absorption cross-section and corrosion resistance that are far superior to those of ordinary commercial zirconium materials. With high economic value and vital strategic significance, it serves as a strategic reserve resource critical to national energy security. Consequently, the efficient and economical preparation and recovery of nuclear-grade zirconium have garnered increasing attention. Molten salt technology serves as a crucial pathway for the separation of zirconium and hafnium, the preparation of metallic zirconium, and the recycling of the used zirconium, offering advantages such as a simplified process and strong adaptability. This review outlines the key role of molten salts in the life cycle management of nuclear-grade zirconium, including the analysis and comparison of the application characteristics of different molten salt systems (fluoride, chloride, and fluorine-chloride mixed salt systems) in the preparation and recovery of metallic zirconium. In addition, it focuses on systematically sorting out and summarizing the electroreduction behavior of zirconium ions in molten salts, aiming to promote the green metallurgy and recycling of nuclear-grade zirconium.

参考文献

[1] Krishnan R.; Asundi M.Proceedings of the Indian Academy of Sciences Section C: Engineering Sciences 1981, 4, 41-56.
[2] 熊炳昆.锆铪冶金; 冶金工业出版社, 2002.
[3] Rickover H.G.; Geiger L.D.; Lustman B.EEnergy Research and Development Administration, Washington, DC (USA).Div.of Naval Reactors, 1975.
[4] Northwood, D.O.Mater.Des. 1985, 6, 58-70.
[5] Azevedo C.d.F. Failure Anal.2011, 18, 1943-1962.
[6] Terrani K.A.J.Nucl.Mater.2018, 501, 13-30.
[7] Sabol G.P.; Comstock R.J.; Nayak U.P.ASTM Spec.Tech.Publ.2000, 1354, 525-544.
[8] Sabol G.P.; Comstock R.J.; Weiner R.A.; Larouere P.; Stanutz R.N.ASTM Spec.Tech.Publ.1993, 1245, 724-724.
[9] Vesterlund G.1980.
[10] Ibrahim E.; Cheadle B.Can.Metall.Q.1985, 24, 273-281.
[11] Gambogi J.Metal Prices in the United States Through 2010, 201.
[12] Rudisill T.S.J.Nucl.Mater.2009, 385, 193-195.
[13] 박재영.Ph.D.Dissertation, Seoul National University, Seoul, 2014.
[14] Srinivasan G.; Kumar K.S.; Rajendran B.; Ramalingam P.Nucl.Eng.Des.2006, 236, 796-811.
[15] Mirza M.; Abdulaziz R.; Maskell W.C.; Wilcock S.; Jones A.H.; Woodall S.; Jackson A.; Shearing P.R.; Brett D.J.Energy Environ.Sci.2023, 16, 952-982.
[16] Wang T., Yun D., Du P.N., & Wu, X.Y.Materials Reports, 2025, 1-13.
(in Chinese).(王挺; 恽迪; 杜沛南; 伍晓勇.材料导报,2025, 1-31.)
[17] Huang K.; Kammerer C.; Keiser Jr, D.; Sohn, Y.J.Phase Equilib.Diffus.2014, 35, 146-156.
[18] Takahashi Y.; Yamawaki M.; Yamamoto K.J.Nucl.Mater.1988, 154, 141-144.
[19] Aly A.; Beeler B.; Avramova M.J.Nucl.Mater.2022, 561, 153523.
[20] Sundaram C.; Mannan S.Sadhana 1989, 14, 21-57.
[21] Carmack W.; Porter D.; Chang Y.; Hayes S.L.; Meyer M.; Burkes D.; Lee C.; Mizuno T.; Delage F.; Somers J.J.Nucl.Mater.2009, 392, 139-150.
[22] Kaity S.; Banerjee J.; Nair M.; Ravi K.; Dash S.; Kutty T.; Kumar A.; Singh R.J.Nucl.Mater.2012, 427, 1-11.
[23] Matthews C.; Unal C.; Galloway J.; Keiser Jr, D.D.; Hayes, S.L.Nucl.Technol.2017, 198, 231-259.
[24] Ahluwalia R.; Hua T.Q.; Geyer H.K.Nucl.Technol.1999, 126, 289-302.
[25] Fredrickson G.L.; Patterson M.N.; Vaden D.; Galbreth G.G.; Yoo T.-S.; Price J.; Flynn E.J.; Searle R.N.Prog.Nuclear Energy 2022, 143, 104037.
[26] Walter C.; Golden G.; Olson N.U--Pu--Zr metal alloy: a potential fuel for LMFBR's, 1975.
[27] Janney D.E.; Hayes S.L.; Adkins C.A.Nucl.Technol.2020, 206, 1-22.
[28] Pahl R.; Porter D.; Lahm C.; Hofman G.Metall.Trans.A 1990, 21, 1863-1870.
[29] Shatalov V.; Nikonov V.; Kotsar M.At.Energy 2008, 105, 242-247.
[30] Liu L.; Bao Y.; Ji H.; Mei Z.; Li R.; Li Y.; Yuan Z.; Chen, J.Resour.Conserv.Recycl.2026, 226, 108708.
[31] Xu, L.; Xiao, Y.; Van Sandwijk, A.; Xu, Q.; Yang, Y.In Energy Materials 2014: Conference Proceedings, 2014; Springer: pp 451-457.
[32] Xu L.; Xiao Y.; Van Sandwijk, A.; Xu, Q.; Yang, Y.J.Nucl.Mater.2015, 466, 21-28.
[33] Wang L.Y.; Lee, M.S.J.Ind.Eng.Chem.2016, 39, 1-9.
[34] Kalavathi V.; Bhuyan R.K.Mater.Today: Proceedings 2019, 19, 781-786.
[35] Li S.; Che Y.; Shu Y.; He J.; Song J.; Yang B.J.Electrochem.Soc.2021, 168, 062508.
[36] Cao G.Idaho National Laboratory (INL), Idaho Falls, ID (United States) 2024, 2474874.
[37] Liu H., Wang H.J., Xu W., Xu G.D., Liu L., & Wang, J.L.China Materials, 2023, 42, 335-342
(in Chinese).(刘辉; 王化军; 许文; 徐国栋; 刘璐; 王俊莲.中国材料进展2023, 42, 335-342.)
[38] Rudling P.; Strasser A.; Garzarolli F.; van Swam, L.IZNA7 special topic report Welding of Zirconium Alloys 2007.
[39] Mishra B.Review of Extraction, Processing, Properties, and Applications of Reactive Metals: 1999 TMS Annual Meeting, San Diego, CA, February 28-March 15, 1999; John Wiley & Sons, 2013.
[40] Branken D.; Lachmann G.; Krieg H.; Bruinsma O.J.Quantum Chem.2011, 111, 682-693.
[41] Ma S.; Yang F.; Tan F.; Xie M.; Yu S.; Xue L.; Li Z.; Hu T.Sep.Purif.Technol.2021, 279, 119779.
[42] Ma Z.; Chen W.; Yan X.; Wang L.; Yan G.; Wu G.; Zhang J.; Zhang S.Sep.Purif.Technol.2025, 364, 132620.
[43] Hu C.; Zhao H.; Sun R.; Yang X.; Wang J.Sep.Purif.Technol.2025, 353, 128539.
[44] Qin W.; Xu S.; Xu G.; Xie Q.; Wang C.; Xu Z.Chem.Eng.J.2013, 225, 528-534.
[45] Yang L.; Liu R.; Xie M.; Yang, F.ACS Appl.Mater.Interfaces2025, 17, 24369-24381.
[46] Hevesy, G.v.Chem.Rev.1925, 2, 1-41.
[47] Sajin N.; Pepelyaeva E.Separation of hafnium from zirconium and production of pure zirconium dioxide.In Proc.Intl.Conf.on Peaceful Uses of At.Energy,1958; Vol.8, p 559.
[48] Fischer W.; Chalybaeus W.The separation of hafnium from zirconium by distribution Z.Anorg.Chem 1947, 255, 79.
[49] Fang C.; Zhong X.; Xiao L.; Chen M.Rare Met.Lett.2007, 1.
[50] Biswas S.; Basu S.J.Radioanal.Nucl.Chem.1999, 242, 253-258.
[51] Levitt A.E.; Freund H.J.Am.Chem.Soc.1956, 78, 1545-1549.
[52] Banda R.; Lee M.S.Sep.Purif.Rev.2015, 44, 199-215.
[53] Ak Ağlar, S.J.Chem.Res. 2019, 4, 106-111.
[54] Minh L.Q.; Long N.V.D.; Duong, P.L.T.; Jung, Y.; Bahadori, A.; Lee, M.Energies 2015, 8, 10354-10369.
[55] Panfilov A.; Korobkov A.; Buzmakov V.; Tereshin V.; Ivshina A.; Abramov A.; Danilov D.; Chukin A.; Polovov I.Russian Metallurgy (Metally) 2024, 2024, 164-170.
[56] Stephens W.W.Zirconium in the Nuclear Industry 1984, 5-36.
[57] Sathiyamoorthy D.; Shetty S.; Bose D.; Gupta C.High Temp.Mater.Processes 1999, 18, 213-226.
[58] Tangri R.; Bose D.; Gupta C.J.Chem.Eng.Data 1995, 40, 823-827.
[59] Xiao Y.;Sandwijk, A.v.; Yang, Y.; Laging, V.Molten Salts Chemistry and Technology 2014, 389-401.
[60] Niselson L.A.; Egorov E.A.; Chuvilina E.L.; Arzhatkina O.A.; Fedorov V.D.J.Chem.Eng.Data 2009, 54, 726-729.
[61] Xu L.; Xiao Y.; van Sandwijk, A.; Zhao, Z.; Li, J.; Xu, Q.; Yang, Y.Sep.Sci.Technol.2016, 51, 1664-1674.
[62] Smirnov M.V.; Komarov V.E.; Baraboshkin, A.N.In Doklady Akad.Nauk SSSR,1960; Inst.of Electrochemistry Ural Div., Academy of Sciences, USSR: Vol.133.
[63] Megy J.A.; Freund H.Metall.Trans.B 1979, 10, 413-421.
[64] Kirihara T.; Nakagawa I.; Seki Y.; Honda Y.Process of separation of hafnium from zirconium by molten salt electrolysis.Patents: 1989.
[65] Kirihara T.; Nakagawa I.; Seki Y.; Honda Y.; Ichihara Y.Process for separation of hafnium tetrachloride from zirconium tetrachloride and electrode.Patents: 1990.
[66] Kirihara T.; Nakagawa I.; Seki Y.; Honda Y.; Ichihara Y.Process for separation of hafnium tetrachloride from zirconium tetrachloride.Patents: 1991.
[67] Kipouros G.; Flengas S.ECS Proceedings Volumes 1990, 1990, 626.
[68] Guang-Sen, C.; Okido, M.; Oki, T.J.Appl.Electrochem.1990, 20, 77-84.
[69] Van Arkel, A.; de Boer, J.H.Z.Anorg.Allg.Chem.1925, 148, 345-350.
[70] Alnutt D.B.; Scheer C.L.Transactions of the Electrochemical Society 1945, 88, 195.
[71] Kroll W.Journal of the franklin institute 1955, 260, 169-192.
[72] Kroll W.; Anderson C.T.; Holmes H.; Yerkes L.; Gilbert H.J.Electrochem.Soc.1948, 94, 1.
[73] Starratt F.W.JOM 1959, 11, 441-443.
[74] Ogarev A.; Shentiakov V.Preparation of ductile zirconium by fused salt electrolysis; USSR, 1959.
[75] Wu Y.K., Chen S., Xu Z.G., & Wang, L.[J].Chin.J.Rare Met., 2009, 33, 62-65
(in Chinese).(吴延科; 陈松; 徐志高; 王力军.稀有金属2009, 33, 62-65.)
[76] Marden J.Bull.US Bur.Mines 1921, 186.
[77] Mellors G.; Senderoff S.J.Electrochem.Soc.1966, 113, 60.
[78] Steinberg M.; Sibert M.; Wainer E.J.Electrochem.Soc.1954, 101, 63.
[79] Raynes B.C.; Thellmann E.L.; Steinberg M.A.; Wainer E.J.Electrochem.Soc.1955, 102, 137.
[80] Polyakova L.; Stangrit P.Electrochimica Acta 1982, 27, 1641-1645.
[81] Wu Y.; Xu Z.; Chen S.; Wang L.; Li G.Rare Metals 2011, 30, 8-13.
[82] Wang Q.; Wang Y.L.; Liu H.J.; Zeng C.L.J.Electrochem.Soc.2016, 163, D636.
[83] Zhang X.; Huang J.; Min D.; Wen T.; Shi Z.; Yang S.Int.J.Hydrogen Energy 2022, 47, 6544-6551.
[84] Martinez G.; Couch D.Metall.Trans.1972, 3, 575-578.
[85] Kipouros G.; Flengas S.J.Electrochem.Soc.1985, 132, 1087.
[86] Qiu Z.; Li Z.; Fu H.; Zhang H.; Zhu Z.; Wang A.; Li H.; Zhang L.; Zhang H.J.Mater.Sci.Technol.2020, 46, 33-43.
[87] Quaranta D.; Massot L.; Gibilaro M.; Mendes E.; Serp J.; Chamelot P.Electrochimica Acta 2018, 265, 586-593.
[88] Ueda M.; Teshima T.; Matsushima H.; Ohtsuka T.J.Solid State Electrochem.2015, 19, 3485-3489.
[89] Wang Y.; Sun R.; Yang L.; Liu H.; Zeng C.J.Electrochem.Soc.2023, 170, 106506.
[90] Fray D.J.Jom 2001, 53, 27-31.
[91] Chen G.Z.; Fray D.Mineral Miner.Process.Extr.Metall.2006, 115, 49-54.
[92] Chen G.Z.; Gordo E.; Fray D.J.Metall.Mater.Trans.B 2004, 35, 223-233.
[93] Lai P.; Hu M.; Qu Z.; Gao L.; Bai C.; Zhang S.Int.J.Electrochem.Sci.2018, 13, 4763-4774.
[94] Zhao G.; Xu Y.; Cai Y.Int.J.Electrochem.Sci 2022, 17, 2.
[95] Li Q.Y.; Du J.H.; Xi Z.P.Rare Met.Mater.Eng.2007, 36, 390-393
(in Chinese).(李晴宇; 杜继红; 奚正平.稀有金属材料与工程2007, 390-393.)
[96] Abdelkader A.; Kilby K.T.; Cox A.; Fray D.Chem.Rev.2013, 113, 2863-2886.
[97] Arroyave R.; Kaufman L.; Eagar T.W.Calphad 2002, 26, 95-118.
[98] Fray D.; Chen G.Mater.Sci.Technol.2004, 20, 295-300.
[99] Abdelkader A.; Daher A.; Abdelkareem R.A.; El-Kashif, E.Metall.Mater.Trans.B 2007, 38, 35-44.
[100] Peng J.; Jiang K.; Xiao W.; Wang D.; Jin X.; Chen G.Z.Chem.Mater.2008, 20, 7274-7280.
[101] Peng J.; Chen H.; Jin X.; Wang T.; Wang D.; Chen G.Z.Chem.Mater.2009, 21, 5187-5195.
[102] Mohandas K.; Fray D.J.Appl.Electrochem.2011, 41, 321-336.
[103] Peng J.; Li G.; Chen H.; Wang D.; Jin X.; Chen G.Z.J.Electrochem.Soc.2009, 157, F1.
[104] Zou X.Y.; Xie H.W.; Zhai Y.C.; Lang X.C.Adv.Mater.Res.2011, 146, 775-779.
[105] Lee M.-J.; Noh J.-S.; Kim K.-Y.; Lee, J.-H.Phys.Met.Metallogr.2014, 115, 1356-1361.
[106] Gritsai L.V.;Omel'chuk, A.A.ECS Transactions 2016, 75, 391.
[107] Khan M.S.; Mukherjee A.; Shakila L.; Arunkumar V.; Kumaresan R.J.Electrochem.Soc.2023, 170, 092507.
[108] Feng Q.; Lv M.; Mao L.; Duan B.; Yang Y.; Chen G.; Lu X.; Li C.Metals 2023, 13, 408.
[109] Jiao S.; Zhu H.J.Mater.Res.2006, 21, 2172-2175.
[110] Zhu H.; Jiao S.; Xiao J.; Zhu J.In Extractive Metallurgy of Titanium, Elsevier, 2020; pp 315-329.
[111] Takeda O.; Suda K.; Lu X.; Zhu H.J.Sustain.Metall.2018, 4, 506-515.
[112] Li S.; Che Y.; Song J.; Shu Y.; Xu B.; He J.; Yang B.Metall.Mater.Trans.B 2021, 52, 3276-3287.
[113] Li S.; Lv Z.; He J.; Song J.J.Mol.Liq.2025, 420, 126831.
[114] Li S.; Che Y.; Song J.; Shu Y.; He J.; Xu B.; Yang B.Sep.Purif.Technol.2021, 274, 118803.
[115] Chen Y.; Zhao R.; Lv Z.; Li S.; He J.; Song J.Int.J.Refract.Met.Hard Mater.2025, 107213.
[116] Shang X.; Li S.; Che Y.; Shu Y.; He J.; Song J.Sep.Purif.Technol.2021, 275, 118096.
[117] Song W.; Chen X.; Jia Y.; Yang M.; Ye G.; Zhu F.Materials 2025, 18, 2634.
[118] Collins E.D.;DelCul, G.; Spencer, B.B.; Brunson, R.; Johnson, J.; Terekhov, D.; Emmanuel, N.Procedia Chemistry 2012, 7, 72-76.
[119] Pucciarelli M.; Palethorpe S.J.; Spencer J.; Banford A.; Lettieri P.; Paulillo A.Prog.Nuclear Energy 2024, 168, 105026.
[120] Collins E.D.; Hylton T.D.; DelCul, G.D.; Spencer, B.B.; Hunt, R.D.; Johnson, J.A.Completion of a Chlorination Test Using 250 grams of High-Burnup Used Fuel Cladding from a North Anna Pressurized Water Reactor; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN(United States), 2018.
[121] Jeon M.K.; Lee C.H.; Lee Y.L.; Choi Y.T.; Kang K.H.; Park G.I.JNFCWT2013,11, 55-61.
[122] 전민구; 이창화; 허철민; 이유리; 최용택; 강권호; 릉근뉴.방사성폐기물학회지2013,11, 69-75(in Korean).
[123] Borjas Nevarez, R.; McNamara, B.; Poineau, F.Nucl.Technol.2021,207, 263-269.
[124] Vestal B.K.; Travis J.; Albert A.; Bruffey S.; McFarlane, J.; Collins, E.D.; Hunt, R.D.; Barnes, C.E.J.Nucl.Mater.2023,578, 154339.
[125] Vestal B.K.Ph.D.Dissertation, University of Tennessee, Knoxville, 2023.
[126] Conrad J.K.; Woods M.E.; Horne G.P.Radiat.Phys.Chem.2023,206, 110732.
[127] Park J.; Choi S.; Sohn S.; Kim K.-R.; Hwang I.S.Nucl.Eng.Des.2014,275, 44-52.
[128] Sohn S.; Choi S.; Park J.; Hwang I.S.Int.J.Energy Res.2021,45, 11775-11790.
[129] Sohn S.; Park J.; Hwang I.S.Int.J.Electrochem.Soc.2018,13, 3897-3909.
[130] Lee C.H.; Kang K.H.; Jeon M.K.; Heo C.M.; Lee Y.L.J.Electrochem.Soc.2012,159, D463.
[131] Willit J.; Miller W.; Battles J.J.Nucl.Mater.1992,195, 229-249.
[132] Liu K.; Liu Y.-L.; Pang J.-W.; Yuan L.-Y.; Wang L.; Chai Z.-F.; Shi W.-Q.Sci.China Chem.2017,60, 264-274.
[133] Cai Y.; Liu H.; Xu Q.; Song Q.; Liu H.; Xu L.Int.J.Electrochem.Soc.2015,10, 4324-4334.
[134] Gibilaro M.; Massot L.; Chamelot P.; Cassayre L.; Taxil P.Electrochimica Acta2013,95, 185-191.
[135] Li Y.; Zhang Y.; Liu Y.; Li G.; Dong, X.J.Wuhan Univ.Technol.-Mater.Sci.Ed.2023,38, 1155-1160.
[136] Park K.T.; Lee T.H.; Jo N.C.; Nersisyan H.H.; Chun B.S.; Lee H.H.; Lee J.H.J.Nucl.Mater.2013,436, 130-138.
[137] Frandsen B.A.; Nickerson S.D.; Clark A.D.; Solano A.; Baral R.; Williams J.; Neuefeind J.; Memmott M.J.Nucl.Mater.2020,537, 152219.
[138] Ishii Y.; Sato K.; Salanne M.; Madden P.A.; Ohtori N.J.Phys.Chem.B2014,118, 3385-3391.
[139] Fabian C.P.; Le T.H.; Bond A.M.J.Electrochem.Soc.2022,169, 036506.
[140] Zuo Y.; Sun Y.-X.; Huang W.; Gong Y.J.Electrochem.Soc.2025,172, 056504.
[141] Li S.ECS Proceedings Volumes2002,2002, 541.
[142] Hoover R.O.; Yoon D.; Phongikaroon S.J.Nucl.Mater.2016,476, 179-187.
[143] Pint, P.; Flengas, S.Inst.Min.Metall., Trans., Sect.C;(United Kingdom)1976,87.
[144] Baboian R.; Hill D.; Bailey R.J.Electrochem.Soc.1965,112, 1221.
[145] Suzuki T.Denki Kagaku oyobi Kogyo Butsuri Kagaku1971,39, 864-867.
[146] Inman D.; Hills G.; Young L.; Bockris J.O.M.Annals of the New York Academy of Sciences (US)1960,79.
[147] Ahluwalia R.K.; Hua T.Q.; Geyer H.K.Nucl.Technol.2001,133, 103-118.
[148] Roper R.; Harkema M.; Sabharwall P.; Riddle C.; Chisholm B.; Day B.; Marotta P.Ann.Nucl.Energy2022,169, 108924.
[149] Mishra B.; Olson D.L.J.Phys.Chem.Solids2005,66, 396-401.
[150] Silvester D.S.; Compton R.G.Zeitschrift für Physikalische Chemie2006,220, 1247-1274.
[151] Xu L.; Xiao Y.; Xu Q.; Van Sandwijk, A.; Li, J.; Zhao, Z.; Song, Q.; Yang, Y.Rsc Advances2016,6, 84472-84479.
[152] Groult H.; Barhoun A.; El Ghallali, H.; Borensztjan, S.; Lantelme, F.J.Electrochem.Soc.2007,155, E19.
[153] Groult H.; Barhoun A.; Briot E.; Lantelme F.; Julien C.J.Fluorine Chem.2011,132, 1122-1126.
[154] Xu L.; Xiao Y.; Xu Q.; van Sandwijk, A.; Zhao, Z.; Song, Q.; Cai, Y.; Yang, Y.J.Nucl.Mater.2017,488, 295-301.
[155] Manning, D.; Mamantov, G.J.Electroanal.Chem.(Netherlands) Superseded by J.Electroanal.Chem.Interfacial Electrochem.1963,6.
[156] Basile F.; Chassaing E.; Lorthioir G.J.Appl.Electrochem.1981,11, 645-651.
[157] Sakamura Y.J.Electrochem.Soc.2004,151, C187.
[158] Ghosh S.; Vandarkuzhali S.; Venkatesh P.; Seenivasan G.; Subramanian T.; Reddy B.P.; Nagarajan K.J.Electroanal.Chem.2009,627, 15-27.
[159] Yang L.; Hudson R.Trans.Am.Inst.Min.Metall.Pet.Eng.1959,215, 589-601.
[160] Park J.; Choi S.; Sohn S.; Kim K.-R.; Hwang I.S.J.Electrochem.Soc.2013,161, H97.
[161] Chen Z.; Zhang M.; Han W.; Wang X.; Tang D.J.Alloys Compd.2008,459, 209-214.
[162] Chen Z.; Li Y.J.; Li S.J.J.Alloys Compd.2011,509, 5958-5961.
[163] Han W.; Wang W.; Li M.; Wang J.; Sun Y.; Yang X.; Zhang M.Sep.Purif.Technol.2020,232, 115965.
[164] Han W.; Wang W.; Li H.; Zhao Y.; Wang Y.; Liu R.; Li M.ACS Sustain.Chem.Eng.2021,9, 17393-17402.
[165] Ding L.; Yan Y.; Smolenski V.; Novoselova A.; Xue Y.; Ma F.; Zhang M.Sep.Purif.Technol.2021,279, 119683.
[166] Xu L.; Xiao Y.; Xu Q.; Song Q.; Yang Y.Int.J.Electrochem.Soc.2017,12, 6393-6403.
[167] Murakami T.; Kato T.J.Electrochem.Soc.2008,155, E90.
[168] Cai Y.; Liu H.; Xu Q.; Song Q.; Xu L.Electrochimica Acta2015,161, 177-185.
[169] Murakami T.; Hayashi H.J.Nucl.Mater.2022,558, 153330.
[170] Cha H.L.; Yun J.-I.Electrochem.Commun.2017,84, 86-89.
[171] Fabian C.P.; Luca V.; Le T.H.; Bond A.M.; Chamelot P.; Massot L.; Caravaca C.; Hanley T.L.; Lumpkin G.R.J.Electrochem.Soc.2012,160, H81.
[172] Xiao Y.Q.; Wang Y.Q.; Lin R.S.; Jia Y.H.; He H.J.Nucl.Radiochem.2018, 40, 100-104
(in Chinese).(肖益群; 王有群; 林如山; 贾艳虹; 何辉.核化学与放射化学2018,40, 100-104.)
[173] Li S.; Che Y.; Song J.; Li C.; Shu Y.; He J.; Yang B.J.Electrochem.Soc.2020,167, 023502.
[174] Winand R.Electrochimica Acta1962,7, 475-508.
[175] Lister R.; Flengas S.Can.J.Chem.1965,43, 2947-2969.
[176] Swaroop B.; Flengas S.Can.J.Chem.1966,44, 199-213.
[177] SAKAKURA T.J.Electrochem.Soc.of Japan1967,35, 75-84.
[178] Yao B.-L.; Liu K.; Liu Y.-L.; Yuan L.-Y.; He H.; Chai Z.-F.; Shi W.-Q.J.Electrochem.Soc.2018,165, D6.
[179] Mao P.; Zhao R.; Li S.; Lv Z.; He J.; Song J.J.Mol.Liq.2025,425, 127254.
[180] Lee C.H.; Lee Y.L.; Jeon M.K.; Choi Y.T.; Kang K.H.; Park G.-I.; Park K.-T.ECS Transactions2014,64, 609.
[181] Lee C.H.; Kang D.Y.; Jeon M.K.; Kang K.H.; Paek S.-W.; Ahn D.-H.; Park K.-T.Int.J.Electrochem.Soc.2016,11, 566-576.
[182] Basile F.; Chassaing E.; Lorthioir G.J.Appl.Electrochem.1984,14, 731-739.
[183] Toth L.; Quist A.; Boyd G.J.Phys.Chem.1973,77, 1384-1388.
[184] Lugovoi V.; Deviatkin S.; Kaptay G.; Kuznetsov S.ECS Proceedings Volumes1996,1996, 303.
[185] Malyshev V.; Gab A.Russian Journal of Non-Ferrous Metals2009,50, 485-491.
[186] Malyshev V.; Gab A.; Izvarina A.; Popescu A.-M.; Constantin V.Rev.Roum.Chim2010,55, 179-185.
文章导航

/