综述

胺-硼烷自由基的产生及其在有机合成中的应用

  • 廖文权 ,
  • 丁秋平 ,
  • 张俊 ,
  • 吴劼
展开
  • a江西师范大学 化学与材料学院 南昌 330022;
    b台州学院 医药化工学院&高等研究院 台州 318000;
    c中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
廖文权,男,江西师范大学化学与材料学院2024级研究生,研究方向为:金属催化的自由基反应;丁秋平,教授、博士生导师。于2009年6月获得复旦大学博士学位,之后分别曾在中科院理化所以及美国斯克利普斯研究所从事博士后、访问学者工作。任职于江西师范大学化学与材料学院,研究方向为:基于绿色合成方法(多组分串联法、碳氢键活化法)合成具有潜在生物活性的功能有机小分子。目前,在 J. Am. Chem. Soc.; Chem. Soc. Rev.; ACS Catal.; Green Chem.; Org. Lett.; Green Synth. Catal.; Chem. Commun.; J. Org. Chem.等国际核心期刊发表SCI论文130 余篇,授权专利 10项;张俊,副教授,本科毕业于河南大学;博士毕业于复旦大学(导师:吴劼 教授);2021年7月入职台州学院高等研究院,主要从事自由基反应研究;吴劼,教授、博士生导师。于2000年6月获得中科院上海有机化学研究所博士学位,之后分别先后在哈佛大学、洛克菲勒大学艾伦·戴蒙德艾滋病研究中心、VivoQuest, Inc. (纽约)从事博士后、访问学者、研究员工作。2004年回国进入复旦大学化学系担任副教授,2006年晋升为教授,博士生导师。2019年加入台州学院医药化工学院,主要从事有机合成、药物化学及相关研究工作。独立工作以来已在Nat. Commun.; J. Am. Chem. Soc.; Angew. Chem. Int. Ed.; Chem. Soc. Rev.等国际核心期刊发表SCI论文400余篇,参与编写专著四本,独立撰写专著一本,获得美国发明专利2项,中国发明专利30余项。

网络出版日期: 2026-01-28

基金资助

项目受国家自然科学基金(No. 22201200) 和浙江省自然科学基金(LZ23B020001)资助.

Amine-Ligated Boryl Radicals: Generation and Synthetic Applications

  • Liao Wenquan ,
  • Ding Qiuping ,
  • Zhang Jun ,
  • Wu Jie
Expand
  • aCollege of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China;
    bSchool of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China;
    cState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Online published: 2026-01-28

Supported by

National Natural Science Foundation of China (No. 22201200) and Natural Science Foundation of Zhejiang Province (LZ23B020001).

摘要

根据电子结构特征,硼自由基主要分为中性硼自由基与路易斯碱配位的硼自由基两类。后者通过配位策略显著提高了硼自由基的稳定性与可控性,是当前有机硼化学领域的研究热点。其中,胺配位的物种电子结构独特:自旋密度主要定域于硼,亲核性突出,在合成转化中具有特有的应用潜力。然而,早期胺-硼烷自由基产生方式有限,限制了其广泛的应用。近五年,得益于自由基化学的快速发展,胺-硼烷自由基的产生方式和应用取得重要突破。本文聚焦于胺-硼烷自由基,内容分为四个部分,依次介绍其参与的:(1)氢原子转移反应;(2)自由基加成反应;(3)卤原子转移反应;(4)自由基取代反应。最后,本文对该方向的未来发展前景进行了简要展望。

本文引用格式

廖文权 , 丁秋平 , 张俊 , 吴劼 . 胺-硼烷自由基的产生及其在有机合成中的应用[J]. 化学学报, 0 : 26128 -26128 . DOI: 10.6023/A25120413

Abstract

While radical chemistry has achieved significant progress over the past few decades, the development of boron-centered radical chemistry remains relatively delayed. Generally, boron radicals can be classified into two main categories based on their electronic structures: neutral boron radicals and Lewis base-ligated boryl radicals. Neutral boron radicals feature only five valence electrons, making them highly electron-deficient and extremely unstable species. This high electron deficiency and instability pose significant challenges to their direct application. In contrast, Lewis base-ligated boryl radicals (with seven electrons) exhibit markedly enhanced stability and more controllable reactivity, which has made them a current focus in boron chemistry. To date, numerous synthetic transformations have been developed using boryl radicals ligated by various Lewis bases such as NHCs, organophosphines, pyridines, alcohols, and amines. The generation and reactivity of these radicals are significantly influenced by the electronic and steric properties of their Lewis base ligands. Among them, amine-ligated boryl radicals, in which spin density is predominantly localized on the boron center, exhibit strong nucleophilic character and thus demonstrate unique reactivity. However, the early reliance on methods such as UV photolysis of peroxides or thermal decomposition of azo compounds to generate alkoxyl radicals, which subsequently promoted the formation of amine-ligated boryl radicals, posed a constraint on their widespread applications. In the past five years, the emergence of new theories and technologies in radical chemistry has enabled the expansion of methods for generating amine-ligated boryl radicals. These include novel catalytic systems (e.g., visible-light photocatalysis, visible-light-metal cooperative catalysis, photoelectrocatalysis) and new boryl radical precursors (e.g., amine carboxyborane). This progress has vigorously promoted their widespread application in diverse synthetic transformations. This manuscript reviews advances in the generation of amine-ligated boryl radicals and summarizes their synthetic applications. It is divided into four sections according to the distinct reaction mechanisms involved: (1) hydrogen atom transfer; (2) radical addition reactions; (3) halogen atom transfer; (4) radical substitution reactions. Finally, a brief outlook on future developments is provided.

参考文献

[1] (a) Crespi S.; Fagnoni M. Chem. Rev.2020, 120, 9790.(b) Gu, Q.-S.; Li, Z.-L.; Liu, X.-Y. Acc. Chem. Res. 2020, 53, 170. (c) Jiang, S.; Nan, N.; He, J.; Guo, J.; Qin, J.; Xie, Y.; Ouyang, X.; Song, R. Chin. J. Org. Chem. 2022, 42, 3959 (in Chinese).
(姜松, 南宁, 何景昊, 郭嘉程, 秦景灏, 谢叶香, 欧阳旋慧, 宋仁杰, 有机化学, 2022, 42, 3959).
[2] (a) Yu X.-Y.; Zhao Q.-Q.; Chen J.; Xiao W.-J.; Chen, J.-R. Acc. Chem. Res.2020, 53, 1066.(b) Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45, 3069. (c) Hao, S.; Liu, X.; Qin, Y. Acta Chim. Sinica 2017, 75, 1137 (in Chinese).
(宋颢, 刘小宇, 秦勇, 化学学报, 2017, 75, 1137).
[3] (a) Chang L.; An Q.; Duan L.; Feng K.; Zuo Z. Chem. Rev.2022, 122, 2429(b) Zhu, Y.; Wang, H.; Shu, P.; Zhang, K.; Wang, Q. Chin. J. Org. Chem. 2024, 44, 1 (in Chinese).
(朱彦硕, 王红言, 舒朋华, 张克娜, 王琪琳, 有机化学, 2024, 44, 1). (c) Shi, J.-L.; Wang, Z.; He, Z.; Dou, B.; Wang, J. Chin. J. Chem. 2023, 41, 259.
[4] (a) Xiao, W.; Chen, J.-Q.; Wu, J.Chem. Soc. Rev. 2025, 54, 6832.(b) Zhang, Z.; Wang, X.; Sivaguru, P.; Wang, Z. Org. Chem. Front. 2022, 9, 6063. (c) Zhao, J.; Gan, Q.; Yuan, Y. Chin. J. Org. Chem. 2025, 45, 1206 (in Chinese).
(赵佳, 甘秋云, 袁耀锋, 有机化学, 2025, 45, 1206).
[5] (a) Li, W.-D.; Wu, Y.; Li, S.-J.; Jiang, Y.-Q.; Li, Y.-L.; Lan, Y.; Xia, J.-B.J. Am. Chem. Soc. 2022, 144, 8551.(b) Zhang H.; Guan S.; Chen H.; Zhang G.; Chen Y. JACS Au2025, 5, 1932.(c) Pang, Y.; Yan, X.; Aman, H.; Xu, M.; Ye, J. J. Am. Chem. Soc. 2025, 147, 25397., 2837.
[6] (a) Friese F. W.; Studer A. Chem. Sci.2019, 10, 8503.(b) Wang, G.; Zhang, H.; Zhao, J.; Li, W.; Cao, J.; Zhu, C.; Li, S. Angew. Chem. Int. Ed. 2016, 55, 5985. (c) Ding, Z.; Liu, Z.; Wang, Z.; Yu, T.; Xu, M.; Wen, J.; Yang, K.; Zhang, H.; Xu, L.; Li, P. J. Am. Chem. Soc. 2022, 144, 8870. (d) Xu, M.; Wang, Z.; Sun, Z.; Ouyang, Y.; Ding, Z.; Yu, T.; Xu, L.; Li, P. Angew. Chem. Int. Ed. 2022, 61, e202214507. (e) Yu, T.; Yang, J.; Wang, Z.; Ding, Z.; Xu, M.; Wen, J.; Xu, L.; Li, P. J. Am. Chem. Soc. 2023, 145, 4304. (f) Liu, Y.; Lin, S.; Li, Y.; Xue, J.-H.; Li, Q.; Wang, H. ACS Catal. 2023, 13, 5096. (g) Wen, J.; Ding, Z.; Li, P. Org. Lett. 2024, 26, 7021. (h) Chen, C.; Ding, Z.; Gao, Y.; Jiang, Y.; Luo, Y.-A.; Ma, X.; Chen, X.; Li, P.; Qiu, Z.; Song, Q.; Wang, X.-Y.; Xie, Z. Sci. China Chem. 2025, 68, 3927. (i) Yu, T.; Zhao, X.; Nie, Z.; Qin, L.; Ding, Z.; Xu, L.; Li, P. Angew. Chem. Int. Ed. 2025, 64, e202420831. (j)Li, X.; Wu, L. Chin. J. Chem. 2024, 42, 3429. (k) Lian, C.; Zhang, J.; Qiu, D.; Mo, F. Chin. J. Chem. 2025, 43, 104. (l) Liu, Q.; Zhang, L.; Mo, F. Acta Chim. Sinica 2020, 78, 1297 (in Chinese).
(刘谦益, 张雷, 莫凡洋, 化学学报, 2020, 78, 1297).
[7] (a) Walton, J. C. Angew. Chem. Int. Ed.2009, 48, 1726.(b) Ueng S.-H.; Solovyev A.; Yuan X.; Geib S. J.; Fensterbank L.; Lacote E.; Malacria M.; Newcomb M.; Walton J. C.; Curran, D. P. J. Am. Chem. Soc.2009, 131, 11256.(c) Gu, Q.; Peng, T.; Bo, M.; Wang, Y. Chin. J. Org. Chem. 2023, 43, 1832.
[8] (a) Peng, T.-Y.; Zhang, F.-L.; Wang, Y.-F.Acc. Chem. Res. 2023, 56, 169.(b) Jin, J.; Xia, H.; Zhang, F.; Wang, Y. Chin. J. Org. Chem. 2020, 40, 2185(in Chinese).
(靳继康, 夏慧敏, 张凤莲, 汪义丰, 有机化学, 2020, 40, 2185)(c) Tian, Y.-M.; Guo, X.-N.; Braunschweig, H.; Radius, U.; Marder, B. Chem. Rev. 2021, 121, 3561., 8995.
[9] (a) Baban, J. A.; Roberts, B. P.J. Chem. Soc. Chem. Commun.1983, 1224.(b) Baban, J. A.; Marti, V. P. J. Roberts, B. P.J. Chem. Soc., Perkin Trans. 2, 1985, 1723.
[10] (a) Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.(b) Paul, V.; Roberts, B. P. J. Chem. Soc. Perkin Trans. 2 1988, 1183.(c) Dang H.-S.; Roberts, B. P. J. Chem. Soc., Perkin Trans. 11993, 891. (d) Dang, H.-S.; Roberts, B. P.Tetrahedron Lett. 1992, 32, 4621.(e) Dang, H.-S.; Roberts, B. P. Tetrahedron Lett. 1992, 41, 6169., 4405.
[11] Lei G.; Xu M.; Chang,R.; Funes-Ardoiz I.; Ye, J. J. Am. Chem. Soc.2021, 143, 11251.
[12] Yang X.;Ma M.; Xu M.; Pang Y.; Zhao H.; Ye, J. Chin. J. Chem.2024, 42, 3227.
[13] Kim1, J.; Constantin1, T.; Simonetti1, M.; Llaveria, J.; Sheikh, N. S.; Leonori, D. Nature 2021, 595, 677.
[14] Li Y.; Zhou Y.; Zhou D.; Jiang Y.; Butt M.; Yang H.; Que Y.; Li Z.; Chen, G. J. Am. Chem. Soc.2024, 146, 21428.
[15] Song L.; Zhuang J.-L.; Xiong P.; Xu H.-C. Green Chem.2025, 27, 10556.
[16] Jiang H.-W.; Yu W.-L.; Wang D.; Xu P.-F.ACS Catal. 2024, 14, 8666.
[17] Buettner C.,S. Stavagna,C. Tilby,M. J.; Górski,B. Douglas,J. J.; Yasukawa,N. Leonori,D. J. Am. Chem. Soc.2024, 146, 24042.
[18] Jiang H.-W.; Qin H.-N.; Wang A.-L.; Zhang R.; Xu P.-F. Org. Lett.2024, 26, 9282.
[19] Stavagna C.; Buettner C. S. Synth.2025, 57, 2589.
[20] Arpa E.,M.; Rivera-Chao, E.; Obradović, L.; Corpas,J. Synth.2025, 57, 2599.
[21] Yasukawa N.; Okada W.; Fimm M.; Kawamura R.; Nomura R.; Takehara T.; Suzuki,T.; Leonori D.; Nakamura, S. Angew. Chem. Int. Ed.2025, 64, e202514741.
[22] (a) Xu W.; Jiang H.; Leng J.; Ong H.-W.; Wu, J. Angew. Chem. Int. Ed.2020, 59, 4009.(b) Xia P.-J.; Ye Z.-P.; Hu, Y.-Z. Xiao J.-A.; Chen K.; Xiang, H.-Y; Chen X.-Q.; Yang, H. Org. Lett. 2020, 22,1742. (c) Miao, Y.-Q.; Pan, Q.-J.; Kang, J.-X.; Dai, X.; Liu, Z.; Chen, X.Org. Chem. Front. 2024, 11, 1462.(d) Takahashi, K.; Shimoi, M.; Watanabe, T.; Maeda, K.; Geib, S. J.; Curran, D. P.; Taniguchi, T. Org. Lett. 2020, 22, 2054., 2350.
[23] Yoshida Y.; Okada W.; Takada K.; Nakamura S.; Yasukawa N. Org. Lett.2025, 27, 2542.
[24] (a) Curran D. P.; Seong C. M. Synlett1991, 1991, 107.(b) Kawamoto, T.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc. 2015, 137, 8617.
[25] Yoshida Y.; Okada W.; Takada K.; Nakamura S.; Yasukawa N. Org. Lett.2025, 27, 7236.
[26] Zhang Z.-Q.; Sang Y.-Q.; Wang C.-Q.; Dai P.; Xue X.-S.; Piper J. L.; Peng Z.-H.; Ma J.-A.; Zhang F.-G.; Wu, J. J. Am. Chem. Soc.2022, 144, 14288.
[27] Zhang Z.-Q.; Wang C.-Q.; Li L.-J.; Piper J. L.; Peng Z.-H.; Ma J.-A.; Zhang F.-G.; Wu J. Chem. Sci.2023, 14, 11546.
[28] Li W.; Huang Z.; Zhong D.; Li H.Org. Lett. 2024, 26, 2062.
[29] Park C.; Lee S. Org. Lett.2025, 27, 13892.
[30] (a) Yasukawa N.; Naito S.; Obata K.; Nakamura S. Synth.2025, 57, 2609.(b)Park C.; Gi S.; Yoon S.; Kwon S.; Lee, S. Org. Chem. Front.2025, 12, 1874.
[31] Corpas J.; Alonso M.; Leonori D. Chem. Sci.2024, 15, 19113.
[32] Deng C.; Wu H.; Li S.; Chen L.; Liu X.; Liu P. ACS Catal.2025, 15, 1294.
[33] Zhang Z.; Tilby, M. J.; Leonori, D. Nat. Synth. 2024, 3,1221.
[34] Li K.-R.; He X.-C.; Gao,J.; Liu Y.-L.; Chen H.-B.; Xiang H.-Y.; Chen K.; Yang, H. J. Org. Chem.2024, 89, 12658.
[35] Zhang Z.; Poletti L.; Leonori, D. J. Am. Chem. Soc.2024, 146, 22424.
[36] Fang C.-Z.; Zhang B.-B.; Tu Y.-L.; Liu Q.; Wang Z.-X.; Chen X.-Y. J. Am.Chem. Soc. 2024, 146, 26574.
文章导航

/