Acta Chimica Sinica ›› 2012, Vol. 70 ›› Issue (23): 2419-2424.DOI: 10.6023/A12080533 Previous Articles     Next Articles

Article

微乳液法合成沸石/介孔二氧化硅复合微球

孙博a, 郭勇a, 徐乐b, 黄哲昊a, 吴鹏b, 车顺爱a   

  1. a 上海交通大学化学化工学院 金属基复合材料国家重点实验室 上海 200240;
    b 华东师范大学化学系 上海市绿色化学与化工过程绿色化重点实验室 上海 200062
  • 投稿日期:2012-08-09 发布日期:2012-11-05
  • 通讯作者: 吴鹏, 车顺爱 E-mail:pwu@chem.ecnu.edu.cn; chesa@sjtu.edu.cn
  • 基金资助:
    项目受国家自然科学基金(Nos. 20890121, 20925310, U1162102)以及科技部973项目基金(Nos. 2009CB930403, 2012BAE05B02)资助.

Synthesis of Zeolite/Mesoporous Silica Composite Microspheres by Microemulsion Method

Sun Boa, Guo Yonga, Xu Leb, Huang Zhehaoa, Wu Pengb, Che Shunaia   

  1. a School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240;
    b Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062
  • Received:2012-08-09 Published:2012-11-05
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Nos. 20890121, 20925310 and U1162102) and Ministry of Science and Technology (Nos. 2009CB930403 and 2012BAE05B02).

Zeolite/mesoporous silica composite microspheres (ZMMS) have been prepared by self-assembling mesoporous silica phase with Y or Ti-MWW zeolites crystallites in a simple microemulsion system. The synthesis process involved the formation of a stable O/W microemulsion from silica precursor of tetrabutyl orthosilicate and cationic quaternary ammonium surfactants as well as a simultaneous assembling of zeolite into the oil phase by their hydrophobic interaction, in which mesoporous silica was formed by self-assembling of surfactant and silica source. Through optimizing synthesis conditions, the ZMMS materials were prepared to possess controllable mass ratio of zeolite to mesoporous silica (0—2.3) and sphere diameter (186—965 μm). The mesopore sizes of the ZMMSs were 3.75 (zeolite-Y/MMSs) and 3.98 nm (Ti-MWW/MMSs). In the liquid-phase ammoximation of cyclohexanone, Ti-MWW/mesoporous silica microspheres showed a high mechanical stability and a catalytic activity comparable to the parent Ti-MWW powders.

Key words: zeolite microsphere, micro/mesoporous composite, microemulsion, zeolite-Y, Ti-MWW