Gold nanoparticles (Au NPs), smaller than 10 nm, have a high ratio of surface area to volume, and therefore have excellent catalytic activity. They are widely used in the field of catalysis. The concentration of small particle sized Au NPs synthesized by traditional wet chemical method is too low, and further enrichment is needed in order to meet the experimental requirements. However, small particle sized Au NPs are prone to aggregate during the concentration process and lose the catalytic activity. It is a challenge to concentrate the small Au NPs while keeping their catalytic activities. In this work, 500 nm silanized SiO2 particles which are covered by positive charges were used to adsorb 5 nm Au NPs through electrostatic interaction, and self-assemble to form Au NPs@SiO2 composite at room temperature. The loaded efficiency of Au NPs can reach 99.5% and the amount of Au NPs particles loaded on each SiO2 particle reached 800~1000, which greatly increased the effective concentration of Au NPs in the local area. Moreover, Au NPs enriched on the surface of SiO2 were bound by electrostatic action and uniformly distributed on the surface of SiO2 without agglomeration. The results showed that the catalytic activity of AuNPs@SiO2 was greatly enhanced by increasing the local concentration of AuNPs, and the catalytic activity was 3 times higher than that of AuNPs at the same concentration. After 5 times of reuse, the catalytic conversion efficiency
remained at about 80%. The Au NPs@SiO2 composite could be preserved for one month with the same structure and catalytic activity. Moreover, by adjusting the molar ratio of SiO2 and Au NPs, the assembly density of Au NPs at SiO2 can be precisely regulated, and the catalytic activity of Au NPs@SiO2 can also be changed precisely. This work provides a simple method for preparing small sized Au NPs with high concentration and greatly improves the catalytic activity of Au NPs. The method has wide application in enriching other small sized nanoparticles.
Key words:
gold nanoparticles,
catalytic activity,
enrichment,
the electrostatic interaction
Cite this article
Li Wei, Ran Tiecheng, Zhang Yu, He Wei, Ma Jifei, Wang Qisheng, Zhang Jichao, Zhu Ying. SiO2-Mediated High-efficiency Enrichment of 5 nm Gold Nanoparticles and Their Catalytic Activity[J]. Acta Chimica Sinica, 2020, 78(2): 170-176.
Export EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Jacinto, M. J.; Kiyohara, P. K.; Masunaga, S. H.; Jardim, R. F.; Rossi, L. M. Appl. Catal. A:Gene. 2008, 338, 52. [2] Bian, Z.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; Majima, T. J. Am. Chem. Soc. 2014, 136, 458. [3] Pattadar, D. K.; Zamborini, F. P. J. Am. Chem. Soc. 2018, 140, 14126. [4] Mondal, B.; Mukherjee, P. S. J. Am. Chem. Soc. 2018, 140, 12592. [5] Kale, M. J.; Avanesian, T.; Christopher, P. ACS Catal. 2013, 4, 116. [6] Dong, H.; Zhu, M.; Yoon, J. A.; Gao, H.; Jin, R.; Matyjaszewski, K. J. Am. Chem. Soc. 2008, 130, 12852. [7] Zhang, J.; Wang, H.; Wang, L.; Ali, S.; Wang, C.; Wang, L.; Meng, X.; Li, B.; Su, D. S.; Xiao, F. S. J. Am. Chem. Soc. 2019, 141, 2975. [8] Balogh, D.; Tel-Vered, R.; Freeman, R.; Willner, I. J. Am. Chem. Soc. 2011, 133, 6533. [9] Li, Y.; Lin, Z.; Li, R.-Z.; Liu, X. Acta Chim. Sinica 2012, 70, 1304(in Chinese). (李迎, 林钊, 李蓉卓, 刘霞, 化学学报, 2012, 70, 1304.) [10] Gittins, D. I.; Caruso, F. ChemPhysChem 2002, 3, 110. [11] Cheng, Z.; Ji, G.; Wang, F.; Zhang, X.; Yang, Y.; Li, J.; Wen, W.; Gao, X. Nucl. Tech. 2017, 40, 060101. [12] Qin, W.; Peng, T.; Gao, Y.; Wang, F.; Hu, X.; Wang, K.; Shi, J.; Li, D.; Ren, J.; Fan, C. Angew. Chem. Int. Ed. 2017, 56, 515. [13] Su, S.; Zou, M.; Zhao, H.; Yuan, C.; Xu, Y.; Zhang, C.; Wang, L.; Fan, C.; Wang, L. Nanoscale 2015, 7, 19129. [14] Li, K.; Wang, K.; Qin, W.; Deng, S.; Li, D.; Shi, J.; Huang, Q.; Fan, C. J. Am. Chem. Soc. 2015, 137, 4292. [15] Zhang, Q.; Wu, S.-Y.; He, M.-W.; Zhang, L.; Liu, Y.; Li, J.-H.; Song, X.-M. Acta Chim. Sinica 2012, 70, 2213(in Chinese). (张谦, 吴抒遥, 何茂伟, 张玲, 刘洋, 李景虹, 宋溪明, 化学学报, 2012, 70, 2213.) [16] Chen, N.; Wei, M.; Sun, Y.; Li, F.; Pei, H.; Li, X.; Su, S.; He, Y.; Wang, L.; Shi, J.; Fan, C.; Huang, Q. Small 2014, 10, 368. [17] Yang, X.; Li, J.; Pei, H.; Li, D.; Zhao, Y.; Gao, J.; Lu, J.; Shi, J.; Fan, C.; Huang, Q. Small 2013, 9, 2844. [18] Hu, Y.; Cheng, H.; Zhao, X.; Wu, J.; Muhammad, F.; Lin, S.; He, J.; Zhou, L.; Zhang, C.; Deng, Y.; Wang, P.; Zhou, Z.; Nie, S.; Wei, H. ACS Nano 2017, 11, 5558. [19] Mi, L.; Wen, Y.; Pan, D.; Wang, Y.; Fan, C.; Hu, J. Small 2009, 5, 2597. [20] Liu, M.; Wang, K.; Chen, N.; Wang, L. Nucl. Tech. 2015, 38, 090501. [21] Zhang, Z.-X.; Luan, W.-X.; Zhang, C.-Y.; Liu, Y.-J. Acta Chim. Sinica 2017, 75, 403(in Chinese). (张召香, 栾文秀, 张超英, 刘玉洁, 化学学报, 2017, 75, 403.) [22] Bo, Y.; Yang, Q.; Meng, Q.; Hu, Y.; Huang, S.-S. Acta Chim. Sinica 2010, 68, 672(in Chinese). (卜扬, 杨清, 孟琦, 胡赢, 黄杉生, 化学学报, 2010, 68, 672.) [23] Wang, C.; Zhang, H.; Zeng, D.; San, L.; Mi, X. Chin. J. Chem. 2016, 34, 299. [24] Ma, X.-P.; Lun, N.; Li, X.; Wen, S.-L.; Wu, Z.-P. J. Chin. Electr. Microsc. Soc. 2004, 23, 379(in Chinese). (马希骋, 伦宁, 李霞, 温树林, 吴中平, 电子显微学报, 2004, 23, 379.) [25] Kim, Y.; Jo, A.; Ha, Y.; Lee, Y.; Lee, D.; Lee, Y.; Lee, C. Electro-analysis 2018, 30, 2861. [26] Hu, S.; Liu, X.; Wang, C.; Camargo, P. H. C.; Wang, J. ACS Appl. Mater. Interfaces 2019, 11, 17444. [27] Nehra, K.; Pandian, S. K.; Byram, C.; Moram, S. S. B.; Soma, V. R. J. Phys. Chem. C 2019, 123, 16210. [28] Wang, C.; Shi, Y.; Dan, Y. Y.; Nie, X. G.; Li, J.; Xia, X. H. Chem. Eur. J. 2017, 23, 6717. [29] Wang. L.-C.; Fang, Z.; Huang, X.-S.; Cao, Y. Pet. Tech. 2007, 36, 869(in Chinese). (王路存, 方正, 黄新松, 曹勇, 石油化工, 2007, 36, 869.) [30] Zhang, P.; Qiao, Z. A.; Jiang, X.; Veith, G. M.; Dai, S. Nano Lett. 2015, 15, 823. [31] Fuerte, A.; Corma, A.; Iglesias, M.; Morales, E.; Sánchez, F. Catal. Lett. 2005, 101, 99. [32] Amin, M. A.; Fadlallah, S. A.; Alosaimi, G. S.; Ahmed, E. M.; Mostafa, N. Y.; Roussel, P.; Szunerits, S.; Boukherroub, R. ACS Appl. Mater. Interfaces 2017, 9, 30115. [33] Brust, M.; Gordillo, G. J. J. Am. Chem. Soc. 2012, 134, 3318. [34] Thangavel, S.; Ramaraj, R. J. Phys. Chem. C 2008, 112, 19825. [35] Maduraiveeran, G.; Ramaraj, R. Electrochem. Commun. 2007, 9, 2051. [36] Zhou, X.; Xu, W.; Liu, G.; Panda, D.; Chen, P. J. Am. Chem. Soc. 2009, 132, 136. [37] Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Am. Chem. Soc. 1994, 7. [38] Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. J. Phys. Chem. B 2006, 110, 15700. [39] Manna, A.; Chen, P.-L.; Akiyama, H.; Wei, T.-X.; Tamada, K.; Knoll, W. Chem. Mater. 2003, 15, 20. [40] Turkevich, J.; Stevenson, P. C.; Hillier, J. Faraday. Discuss. Soc. 1951, 11, 55. [41] Perrault, S. D.; Chan, W. C. W. J. Am. Chem. Soc. 2009, 131, 17042. [42] Zhao, Y.; Huang, Y.; Zhu, H.; Zhu, Q.; Xia, Y. J. Am. Chem. Soc. 2016, 138, 16645. [43] Chegel, V.; Rachkov, O.; Lopatynskyi, A.; Ishihara, S.; Yanchuk, I.; Nemoto, Y.; Hill, J. P.; Ariga, K. J. Phys. Chem. C 2012, 116, 2683. [44] Zakaria, H. M.; Shah, A.; Konieczny, M.; Hoffmann, J. A.; Nijdam, A. J.; Reeves, M. E. Langmuir 2013, 29, 7661. [45] Shi, L.; Jing, C.; Ma, W.; Li, D.-W.; Halls, J. E.; Marken, F.; Long, Y.-T. Angew. Chem. Int. Ed. 2013, 52, 6011. [46] Zheng, X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W.; Wen, Y.; He, Y.; Huang, Q.; Long, Y.-T.; Fan, C. Angew. Chem. Int. Ed. 2011, 50, 11994. [47] Wang, H.-S.; Zhao, W.-X. Chin. J. Org. Chem. 2013, 33, 1822(in Chinese). (王宏社, 赵卫星, 有机化学, 2013, 33, 1822.) [48] Xiao, J.-J.; Qiu, Z.-M.; He, W.-J.; Du, C.-C.; Zhou, W. Chin. J. Org. Chem. 2016, 36, 987(in Chinese). (肖建军, 邱祖民, 何维娟, 杜成成, 周伟, 有机化学, 2016, 36, 987.) [49] Choi, D.; Ham, S.; Jang, D.-J. Mater. Res. Bull. 2019, 120, 110578. [50] Cao, N.; Zeng, P.; Zhao, F.; Zeng, B. Talanta 2019, 204, 402. [51] Li, L.; Si, Y.; He, B.; Li, J. Talanta 2019, 205, 120116. |
[1] |
Qiwen Chen, Xianzheng Zhang.
Reserach Advances on Nanozyme-Guided Therapy of Inflammatory Bowel Diseases★
[J]. Acta Chimica Sinica, 2023, 81(8): 1043-1051.
|
[2] |
Chang Li, Zhendong Zheng, Jiangnan Zheng, Ruijun Tian.
Glycoprotein Identification using Cleavable Bifunctional Probes★
[J]. Acta Chimica Sinica, 2023, 81(12): 1673-1680.
|
[3] |
Shui Ziyi, He Nana, Chen Li, Zhao Wei, Chen Xi.
Porous Perovskite towards Oxygen Reduction Reaction in Flexible Aluminum-Air Battery
[J]. Acta Chimica Sinica, 2020, 78(6): 557-564.
|
[4] |
Jin Fengming, Dong Hongwei, Zhao Yan, Zhuang Shengli, Liao Lingwen, Yan Nan, Gu Wanmiao, Zha Jun, Yuan Jinyun, Li Jin, Deng Haiteng, Gan Zibao, Yang Jinlong, Wu Zhikun.
Module Replacement of Gold Nanoparticles by a Pseudo-AGR Process
[J]. Acta Chimica Sinica, 2020, 78(5): 407-411.
|
[5] |
Wu Yan, Pang Aimin, Hu Lei, He Gensheng, Zhang Yingying, Zhang Lixiong, Li Minghai, Ma Zhenye.
Preparation of α-Fe2O3/(IPDI-HTPB) Composite Nanoparticles and Their Catalytic Performance
[J]. Acta Chimica Sinica, 2020, 78(4): 337-343.
|
[6] |
Feng Tingting, Gao Shouqin, Wang Kun.
Colorimetric Sensing of Prostate Specific Membrane Antigen Based on Gold Nanoparticles
[J]. Acta Chim. Sinica, 2019, 77(5): 422-426.
|
[7] |
Chu Wanyi, Tang Xiao, Li Zhen, Lin Jingcheng, Qian Jueshi.
Influence Factors on the Microstructure of Ultrathin TiO2 Nanosheets Synthesized by Liquid Phase Method
[J]. Acta Chim. Sinica, 2018, 76(7): 549-555.
|
[8] |
Gu Tianhang, Shi Junming, Hua Yilong, Liu Jing, Wang Wei, Zhang Wei-xian.
Enrichment of Silver from Water Using Nanoscale Zero-Valent Iron (nZVI)
[J]. Acta Chim. Sinica, 2017, 75(10): 991-997.
|
[9] |
Wang Xin, Tan Lili, Yang Yingwei.
Controlled Drug Release Systems Based on Mesoporous Silica Capped by Gold Nanoparticles
[J]. Acta Chim. Sinica, 2016, 74(4): 303-311.
|
[10] |
Zhang Lixia, Du Xiufang, Zeng Ying.
Chemistry in Separation and Enrichment of Glycoproteins/Glycopeptides
[J]. Acta Chim. Sinica, 2016, 74(2): 149-154.
|
[11] |
Yan Zhuojun, Yuan Ye, Liu Jia, Li Qin, Nguyen Nam-Trung, Zhang Daming, Tian Yuyang, Zhu Guangshan.
Targeted Syntheses of Charged Porous Aromatic Frameworks for Iodine Enrichment and Release
[J]. Acta Chim. Sinica, 2016, 74(1): 67-73.
|
[12] |
Niu Dongfang, Ding Yong, Ma Zhixing, Wang Minghui, Liu Zhou, Zhang Bowen, Zhang Xinsheng.
Effects of Surface Modification of Carbon Nanofibers on Their Electro- catalytic Activity for Hydrogen Evolution Reaction of Water Electrolysis
[J]. Acta Chim. Sinica, 2015, 73(7): 729-734.
|
[13] |
Li Xianqin, Yu Dongping, Feng Xiaomin, Guo Zhimou, Li Xiuling, Zou Lijuan, Liang Xinmiao.
A Novel Glycopeptides Enrichment Method Using Weak Cation Exchange Chromatography Material under Hydrophilic Interaction Liquid Chromatography Mode
[J]. Acta Chim. Sinica, 2015, 73(10): 1074-1079.
|
[14] |
Han Ruobing, Lu Shan, Wang Yanjie, Zhang Xuehua, Wu Qiang, He Tao.
Application of SO4- and I- co-Doped Polyaniline Counter Electrode in Dye-sensitized Solar Cells
[J]. Acta Chim. Sinica, 2015, 73(10): 1061-1068.
|
[15] |
Feng Xiaomin, Shen Aijin, Li Xianqin, Li Xiuling, Zou Lijuan, Liang Xinmiao.
Highly Selective Enrichment of Multi-Phosphopeptides by Click TE-GSH
[J]. Acta Chimica Sinica, 2014, 72(10): 1085-1091.
|
|