Acta Chimica Sinica ›› 2020, Vol. 78 ›› Issue (9): 888-900.DOI: 10.6023/A20060221 Previous Articles Next Articles
Special Issue: 多孔材料:金属有机框架(MOF)
Review
孙炼, 王洪磊, 余金山, 周新贵
投稿日期:
2020-06-09
发布日期:
2020-08-01
通讯作者:
周新贵
E-mail:zhouxinguilmy@163.com
作者简介:
孙炼,2018年毕业于国防科技大学材料科学与工程专业,获工学硕士学位.现为国防科技大学在读博士,导师周新贵教授.主要从事金属有机框架材料及质子交换膜相关研究;王洪磊,副教授,1983年生,2012年毕业于国防科技大学并获得材料科学与工程博士学位,2015~2018年在中国工程物理研究院开展博士后研究工作,2019年10~12月在伦敦玛丽女王大学开展短期访问.主要从事陶瓷基复合材料研究工作;余金山,1973年生,2006年毕业于上海交通大学并获得材料学博士学位,随后在日本东北大学从事3年博士后研究工作,2009年回国后在国防科技大学任副研究员,从事陶瓷基复合材料制备工艺研究及材料分析测试方面的工作;周新贵,1968年生,国防科技大学空天科学学院教授,博士生导师.2006年在中南大学获得工学博士学位,2008年在布里斯托大学访学一年.主要研究方向为陶瓷基复合材料以及功能陶瓷,主持参与15项国家重点科研项目,荣获国家科技进步二等奖、省部级科技进步一等奖、全国发明展金奖.发表学术论文90余篇,其中70篇为SCI检索.
基金资助:
Sun Lian, Wang Honglei, Yu Jinshan, Zhou Xingui
Received:
2020-06-09
Published:
2020-08-01
Supported by:
Share
Sun Lian, Wang Honglei, Yu Jinshan, Zhou Xingui. Recent Progress on Proton-Conductive Metal-Organic Frameworks and Their Proton Exchange Membranes[J]. Acta Chimica Sinica, 2020, 78(9): 888-900.
[1] Escorihuela, J.; Narducci, R.; Compañ, V.; Costantino, F. Adv. Mater. Interfaces 2019, 6, 1801146. [2] Haubold, H. G.; Vad, T.; Jungbluth, H.; Hiller, P. Electrochim. Acta 2001, 46, 1559. [3] Jaafar, J.; Nordin, M.; Hadi, N. A.; Ismail, A. F.; Othman, M. H. D.; A Rahman, M.; Aziz, F. J. Membr. Sci. Res. 2019, 5, 65. [4] Fang, J.; Shen, P. K. J. Membr. Sci. 2006, 285, 317. [5] Zhang, Y.; Zheng, L.; Liu, B.; Wang, H.; Shi, H. J. Membr. Sci. 2019, 584, 173. [6] Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242(in Chinese). (陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.) [7] Qiao, W.; Song, T.; Zhao, B. Chin. J. Chem. 2019, 37, 474. [8] Dai, M. M.; Wang, J.; Li, L. G.; Wang, Q.; Liu, M. N.; Zhang, Y. G. Acta Chim. Sinica 2020, 78, 355(in Chinese). (代迷迷, 王健, 李麟阁, 王琪, 刘美男, 张跃钢, 化学学报, 2020, 78, 355.) [9] He, T.; Zhang, Y.-Z.; Wu, H.; Kong, X.-J.; Liu, X.-M.; Xie, L.-H.; Dou, Y.; Li, J.-R. ChemPhysChem 2017, 18, 3245. [10] Kanda, S.; Yamashita, K.; Ohkawa, K. Bull. Chem. Soc. Jpn. 1979, 52, 3296. [11] Shimizu, G. K. H.; Taylor, J. M.; Kim, S. Science 2013, 341, 354. [12] Ye, Y.; Gong, L.; Xiang, S.; Zhang, Z.; Chen, B. Adv. Mater. 2020, 32, 1907090. [13] Lim, D. W.; Kitagawa, H. Chem. Rev. 2020, 120, 8416. [14] Li, W.-H.; Deng, W.-H.; Wang, G.-E.; Xu, G. EnergyChem 2020, 2, 100029. [15] Agmon, N. Chem. Phys. Lett. 1995, 244, 456. [16] Kreuer, K. D.; Rabenau, A.; Weppner, W. Angew. Chem. Int. Ed. 1982, 21, 208. [17] Zhang, J.; Bai, H.-J.; Ren, Q.; Luo, H.-B.; Ren, X.-M.; Tian, Z.-F.; Lu, S. ACS Appl. Mater. Interfaces 2018, 10, 28656. [18] Wang, Z. T.; Li, H.; Yan, S. C.; Fang, Q. R. Acta Chim. Sinica 2020, 78, 63(in Chinese). (王志涛, 李辉, 颜士臣, 方千荣, 化学学报, 2020, 78, 63.) [19] Umeyama, D.; Horike, S.; Inukai, M.; Itakura, T.; Kitagawa, S. J. Am. Chem. Soc. 2012, 134, 12780. [20] Liu, M.; Chen, L.; Lewis, S.; Chong, S. Y.; Little, M. A.; Hasell, T.; Aldous, I. M.; Brown, C. M.; Smith, M. W.; Morrison, C. A.; Hardwick, L. J.; Cooper, A. I. Nat. Commun. 2016, 7, 12750. [21] Zhang, K.; Xie, X.; Li, H.; Gao, J.; Nie, L.; Pan, Y.; Xie, J.; Tian, D.; Liu, W.; Fan, Q. Adv. Mater. 2017, 29, 1701804. [22] Wu, L.; Yang, Y.; Ye, Y.; Yu, Z.; Song, Z.; Chen, S.; Chen, L.; Zhang, Z.; Xiang, S. ACS Appl. Energy Mater. 2018, 1, 5068. [23] Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303(in Chinese). (卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76, 303.) [24] Yang, F.; Huang, H.; Wang, X.; Li, F.; Gong, Y.; Zhong, C.; Li, J.-R. Cryst. Growth Des. 2015, 15, 5827. [25] Losch, P.; Joshi, H. R.; Vozniuk, O.; Grünert, A.; Ochoa-Hernández, C.; Jabraoui, H.; Badawi, M.; Schmidt, W. J. Am. Chem. Soc. 2018, 140, 17790. [26] Sun, Z.; Yu, S.; Zhao, L.; Wang, J.; Li, Z.; Li, G. Chem.-Eur. J. 2018, 24, 10829. [27] Yamada, T.; Sadakiyo, M.; Kitagawa, H. J. Am. Chem. Soc. 2009, 131, 3144. [28] Yang, F.; Xu, G.; Dou, Y.; Wang, B.; Zhang, H.; Wu, H.; Zhou, W.; Li, J.-R.; Chen, B. Nat. Energy 2017, 2, 877. [29] Tang, Q.; Yang, Y.-L.; Zhang, N.; Liu, Z.; Zhang, S.-H.; Tang, F.-S.; Hu, J.-Y.; Zheng, Y. Z.; Liang, F. P. Inorg. Chem. 2018, 57, 9020. [30] Wu, H.; Yang, F.; Lv, X. L.; Wang, B.; Zhang, Y.-Z.; Zhao, M. J.; Li, J. R. J. Mater. Chem. A 2017, 5, 14525. [31] Feng, L.; Wang, H. S.; Xu, H. L.; Huang, W. T.; Zeng, T. Y.; Cheng, Q. R.; Pan, Z. Q.; Zhou, H. Chem. Commun. 2019, 55, 1762. [32] Zhang, F.-M.; Dong, L.-Z.; Qin, J.-S.; Guan, W.; Liu, J.; Li, S.-L.; Lu, M.; Lan, Y. Q.; Su, Z. M.; Zhou, H. C. J. Am. Chem. Soc. 2017, 139, 6183. [33] Horike, S.; Chen, W.; Itakura, T.; Inukai, M.; Umeyama, D.; Asakura, H.; Kitagawa, S. Chem. Commun. 2014, 50, 10241. [34] Liu, L.; Yao, Z.; Ye, Y.; Liu, C.; Lin, Q.; Chen, S.; Xiang, S.; Zhang, Z. ACS Appl. Mater. Interfaces 2019, 11, 16490. [35] Liu, R.; Zhao, L.; Yu, S.; Liang, X.; Li, Z.; Li, G. Inorg. Chem. 2018, 57, 11560. [36] Chen, H.; Han, S. Y.; Liu, R. H.; Chen, T. F.; Bi, K. L.; Liang, J. B.; Deng, Y. H.; Wan, C. Q. J. Power Sources 2018, 376, 168. [37] Meng, X.; Wei, M.-J.; Wang, H. N.; Zang, H. Y.; Zhou, Z. Y. Dalton Trans. 2018, 47, 1383. [38] Gui, D.; Dai, X.; Tao, Z.; Zheng, T.; Wang, X.; Silver, M. A.; Shu, J.; Chen, L.; Wang, Y.; Zhang, T. J. Am. Chem. Soc. 2018, 140, 6146. [39] Shigematsu, A.; Yamada, T.; Kitagawa, H. J. Am. Chem. Soc. 2011, 133, 2034. [40] Sarango-Ramírez, M. K.; Lim, D.-W.; Kolokolov, D. I.; Khudozhitkov, A. E.; Stepanov, A. G.; Kitagawa, H. J. Am. Chem. Soc. 2020, 142, 6861. [41] Bao, S. S.; Shimizu, G. K.; Zheng, L. M. Coord. Chem. Rev. 2019, 378, 577. [42] Taylor, J. M.; Mah, R. K.; Moudrakovski, I. L.; Ratcliffe, C. I.; Vaidhyanathan, R.; Shimizu, G. K. H. J. Am. Chem. Soc. 2010, 132, 14055. [43] Taylor, J. M.; Dawson, K. W.; Shimizu, G. K. H. J. Am. Chem. Soc. 2013, 135, 1193. [44] Ramaswamy, P.; Wong, N. E.; Gelfand, B. S.; Shimizu, G. K. H. J. Am. Chem. Soc. 2015, 137, 7640. [45] Luo, Y. H.; Yi, L. Q.; Lu, J. N.; Dong, L.-Z.; Lan, Y. Q. CrystEngComm 2018, 20, 6077. [46] Li, X. M.; Dong, L. Z.; Li, S. L.; Xu, G.; Liu, J.; Zhang, F. M.; Lu, L. S.; Lan, Y. Q. ACS Energy Lett. 2017, 2, 2313. [47] Li, R.; Wang, S. H.; Chen, X. X.; Lu, J.; Fu, Z. H.; Li, Y.; Xu, G.; Zheng, F. K.; Guo, G. C. Chem. Mater. 2017, 29, 2321. [48] Nagarkar, S. S.; Unni, S. M.; Sharma, A.; Kurungot, S.; Ghosh, S. K. Angew. Chem. 2014, 126, 2676. [49] Hurd, J. A.; Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C. I.; Moudrakovski, I. L.; Shimizu, G. K. H. Nat. Chem. 2009, 1, 705. [50] Bureekaew, S.; Horike, S.; Higuchi, M.; Mizuno, M.; Kawamura, T.; Tanaka, D.; Yanai, N.; Kitagawa, S. Nat. Mater. 2009, 8, 831. [51] Ye, Y.; Guo, W.; Wang, L.; Li, Z.; Song, Z.; Chen, J.; Zhang, Z.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2017, 139, 15604. [52] Sun, X. L.; Deng, W. H.; Chen, H.; Han, H. L.; Taylor, J. M.; Wan, C. Q.; Xu, G. Chem.-Eur. J. 2017, 23, 1248. [53] Hermes, S.; Schröder, F.; Chelmowski, R.; Wöll, C.; Fischer, R. A. J. Am. Chem. Soc. 2005, 127, 13744. [54] Xu, G.; Otsubo, K.; Yamada, T.; Sakaida, S.; Kitagawa, H. J. Am. Chem. Soc. 2013, 135, 7438. [55] Kim, S.; Wang, H.; Lee, Y. M. Angew. Chem. Int. Ed. 2019, 58, 17512. [56] Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Angew. Chem. Int. Ed. 2017, 56, 9292. [57] Niluroutu, N.; Pichaimuthu, K.; Sarmah, S.; Dhanasekaran, P.; Shukla, A.; Unni, S. M.; Bhat, S. D. New J. Chem. 2018, 42, 16758. [58] Guo, Y.; Jiang, Z.; Ying, W.; Chen, L.; Liu, Y.; Wang, X.; Jiang, Z.-J.; Chen, B.; Peng, X. Adv. Mater. 2018, 30, 1705155. [59] Cai, Y. Y.; Yang, Q.; Zhu, Z. Y.; Sun, Q. H.; Zhu, A. M.; Zhang, Q. G.; Liu, Q. L. J. Membr. Sci. 2019, 590, 117277. [60] Han, R.; Wu, P. ACS Appl. Mater. Interfaces 2018, 10, 18351. [61] Wang, L.; Deng, N.; Wang, G.; Ju, J.; Cheng, B.; Kang, W. ACS Appl. Mater. Interfaces 2019, 11, 39979. [62] Rao, Z.; Feng, K.; Tang, B.; Wu, P. J. Membr. Sci. 2017, 533, 160. [63] Bai, Z.; Liu, S.; Chen, P.; Cheng, G.; Wu, G.; Liu, Y. Nanotechnology 2020, 31, 125702. [64] Bai, Z.; Liu, S.; Cheng, G.; Wu, G.; Liu, Y. Micropor. Mesopor. Mat. 2020, 292, 109763. [65] Yang, L.; Tang, B.; Wu, P. J. Mater. Chem. A 2015, 3, 15838. [66] Ru, C.; Gu, Y.; Na, H.; Li, H.; Zhao, C. ACS Appl. Mater. Interfaces 2019, 11, 31899. [67] Zhang, F.; Zhang, T.; Zou, X.; Liang, X.; Zhu, G.; Qu, F. Solid State Ionics 2017, 301, 125. [68] Rao, Z.; Tang, B.; Wu, P. ACS Appl. Mater. Interfaces 2017, 9, 22597. [69] Dong, X.-Y.; Wang, J.-H.; Liu, S.-S.; Han, Z.; Tang, Q.-J.; Li, F.-F.; Zang, S.-Q. ACS Appl. Mater. Interfaces 2018, 10, 38209. [70] Adams, R.; Carson, C.; Ward, J.; Tannenbaum, R.; Koros, W. Micropor. Mesopor. Mat. 2010, 131, 13. [71] Sabetghadam, A.; Liu, X.; Gottmer, S.; Chu, L.; Gascon, J.; Kapteijn, F. J. Membr. Sci. 2019, 570-571, 226. [72] Liu, Y.; Liu, G.; Zhang, C.; Qiu, W.; Yi, S.; Chernikova, V.; Chen, Z.; Belmabkhout, Y.; Shekhah, O.; Eddaoudi, M.; Koros, W. Adv. Sci. 2018, 5, 1800982. [73] Cao, L.; Tao, K.; Huang, A.; Kong, C.; Chen, L. Chem. Commun. 2013, 49, 8513. [74] Anjum, M. W.; Vermoortele, F.; Khan, A. L.; Bueken, B.; De Vos, D. E.; Vankelecom, I. F. J. ACS Appl. Mater. Interfaces 2015, 7, 25193. [75] Ordoñez, M. J. C.; Balkus, K. J.; Ferraris, J. P.; Musselman, I. H. J. Membr. Sci. 2010, 361, 28. [76] Dorosti, F.; Omidkhah, M.; Abedini, R. Chem. Eng. Res. Des. 2014, 92, 2439. [77] Duan, L.; Wang, Y.; Zhang, Y.; Liu, J. Appl. Surf. Sci. 2015, 355, 436. [78] Li, W.; Samarasinghe, S. A. S. C.; Bae, T.-H. J. Ind. Eng. Chem. 2018, 67, 156. [79] Ru, C.; Li, Z.; Zhao, C.; Duan, Y.; Zhuang, Z.; Bu, F.; Na, H. ACS Appl. Mater. Interfaces 2018, 10, 7963. [80] Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Chem. Commun. 2013, 49, 9449. [81] Peng, X.; Ye, L.; Ding, Y.; Yi, L.; Zhang, C.; Wen, Z. Appl. Catal., B 2020, 260, 118152. [82] Liu, S.; Sang, X.; Wang, L.; Zhang, J.; Song, J.; Han, B. Electrochim. Acta 2017, 257, 243. [83] Zhang, B.; Cao, Y.; Li, Z.; Wu, H.; Yin, Y.; Cao, L.; He, X.; Jiang, Z. Electrochim. Acta 2017, 240, 186. [84] Wu, B.; Lin, X.; Ge, L.; Wu, L.; Xu, T. Chem. Commun. 2013, 49, 143. [85] Liu, W.; Wang, S.; Xiao, M.; Han, D.; Meng, Y. Chem. Commun. 2012, 48, 3415. [86] Liu, X.; Yang, Z.; Zhang, Y.; Li, C.; Dong, J.; Liu, Y.; Cheng, H. Int. J. Hydrogen Energy 2017, 42, 10275. [87] Wu, B.; Pan, J.; Ge, L.; Wu, L.; Wang, H.; Xu, T. Sci. Rep. 2014, 4, 4334. [88] Choi, B. G.; Huh, Y. S.; Park, Y. C.; Jung, D. H.; Hong, W. H.; Park, H. Carbon 2012, 50, 5395. [89] Enotiadis, A.; Angjeli, K.; Baldino, N.; Nicotera, I.; Gournis, D. Small 2012, 8, 3338. [90] Wu, B. Ph.D. Dissertation, University of Science and Technology of China, Hefei, 2015 (in Chinese). (伍斌, 博士论文, 中国科学技术大学, 合肥, 2015). [91] Sun, H.; Tang, B.; Wu, P. ACS Appl. Mater. Interfaces 2017, 9, 26077. [92] Ahmadian-Alam, L.; Mahdavi, H. Renew. Energ. 2018, 126, 630. |
[1] | Bo Sun, Wenwen Ju, Tao Wang, Xiaojun Sun, Ting Zhao, Xiaomei Lu, Feng Lu, Quli Fan. Preparation of Highly-dispersed Conjugated Polymer-Metal Organic Framework Nanocubes for Antitumor Application [J]. Acta Chimica Sinica, 2023, 81(7): 757-762. |
[2] | Junchang Chen, Mingxing Zhang, Shuao Wang. Research Progress of Synthesis Methods for Crystalline Porous Materials [J]. Acta Chimica Sinica, 2023, 81(2): 146-157. |
[3] | Qingxin Wang, Yong Cui, Yunqi Li, Shanfu Lu, Yan Xiang. Effect of Controllable Pyrolysis of Ionomers in Fe-N-C Cathode Catalytic Layer on Cell Performance and Stability of Membrane Electrode Assembly★ [J]. Acta Chimica Sinica, 2023, 81(10): 1350-1356. |
[4] | Xiaojuan Li, Ziyu Ye, Shuhan Xie, Yongjing Wang, Yonghao Wang, Yuancai Lv, Chunxiang Lin. Study on Performance and Mechanism of Phenol Degradation through Peroxymonosulfate Activation by Nitrogen/Chlorine Co-doped Porous Carbon Materials [J]. Acta Chimica Sinica, 2022, 80(9): 1238-1249. |
[5] | Xu Yan, Hemi Qu, Ye Chang, Xuexin Duan. Application of Metal-Organic Frameworks in Gas Pre-concentration, Pre-separation and Detection [J]. Acta Chimica Sinica, 2022, 80(8): 1183-1202. |
[6] | Fang Liu, Tingting Pan, Xiurong Ren, Weiren Bao, Jiancheng Wang, Jiangliang Hu. Research on Preparation and Benzene Adsorption Performance of HCDs@MIL-100(Fe) Adsorbents [J]. Acta Chimica Sinica, 2022, 80(7): 879-887. |
[7] | Linan Cao, Min Wei. Recent Progress of Electric Conductive Metal-Organic Frameworks Thin Film [J]. Acta Chimica Sinica, 2022, 80(7): 1042-1056. |
[8] | Shihui Wang, Xiaoyu Xue, Min Cheng, Shaochen Chen, Chong Liu, Li Zhou, Kexin Bi, Xu Ji. High-Throughput Computational Screening of Metal-Organic Frameworks for CH4/H2 Separation by Synergizing Machine Learning and Molecular Simulation [J]. Acta Chimica Sinica, 2022, 80(5): 614-624. |
[9] | Rong Zhang, Jiangping Liu, Ziyi Zhu, Shumei Chen, Fei Wang, Jian Zhang. Synthesis, Structure and Characterization of Two Ferrocene Functionalized Cadmium Metal Organic Frameworks※ [J]. Acta Chimica Sinica, 2022, 80(3): 249-254. |
[10] | Xusheng Wang, Xu Yang, Chunhui Chen, Hongfang Li, Yuanbiao Huang, Rong Cao. Graphene Quantum Dots Supported on Fe-based Metal-Organic Frameworks for Efficient Photocatalytic CO2 Reduction※ [J]. Acta Chimica Sinica, 2022, 80(1): 22-28. |
[11] | Yan-Wu Zhao, Xing Li, Fu-Qiang Zhang, Xiang Zhang. Precise Control of the Dimension of Homochiral Metal-Organic Frameworks (MOFs) and Their Luminescence Properties [J]. Acta Chimica Sinica, 2021, 79(11): 1409-1414. |
[12] | Huan Liu, Li Li, Ping Li, Guangzhi Zhang, Xun Xu, Hao Zhang, Lingfang Qiu, Hui Qi, Shuwang Duo. In-situ Construction of 2D/3D ZnIn2S4/TiO2 with Enhanced Photocatalytic Performance [J]. Acta Chimica Sinica, 2021, 79(10): 1293-1301. |
[13] | Zhang Jinwei, Li Ping, Zhang Xinning, Ma Xiaojie, Wang Bo. Water Adsorption Properties and Applications of Stable Metal-organic Frameworks [J]. Acta Chimica Sinica, 2020, 78(7): 597-612. |
[14] | Wu Qianye, Zhang Chenxi, Sun Kang, Jiang Hai-Long. Microwave-Assisted Synthesis and Photocatalytic Performance of a Soluble Porphyrinic MOF [J]. Acta Chimica Sinica, 2020, 78(7): 688-694. |
[15] | Chen Yang, Du Yadan, Wang Yong, Liu Puxu, Li Libo, Li Jinping. Ammonia Modification on UTSA-280 for C2H4/C2H6 Separation [J]. Acta Chimica Sinica, 2020, 78(6): 534-539. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||