Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (3): 340-358.DOI: 10.6023/A21120545 Previous Articles Next Articles
Special Issue: 中国科学院青年创新促进会合辑
Review
李崇b, 李娜b, 常立美b, 谷志刚a,b,*(), 张健a,b
投稿日期:
2021-12-05
发布日期:
2022-01-07
通讯作者:
谷志刚
作者简介:
李崇, 中国科学院福建物质结构研究所与福州大学联合培养2021级硕士研究生, 主要从事MOF薄膜的制备与应用研究. |
李娜, 中国科学院福建物质结构研究所与福州大学联合培养2020级硕士研究生, 主要从事MOF薄膜的制备与应用研究. |
谷志刚, 中国科学院福建物质结构研究所研究员, 中国科学院青年创新促进会会员, 博士生导师. 2014年获卡尔斯鲁厄理工大学(KIT)博士学位, 随后在KIT从事博后研究, 2015年在中科院福建物质结构研究所结构化学国家重点实验室任副研究员、2018晋升为研究员和博士生导师. 主要从事表面配位金属-有机框架薄膜(SURMOF)的组装及其在多个领域的功能与应用研究, 包括拓展其在非线性光学(光限幅)、光电薄膜器件、分子(手性)识别与分离等领域. |
基金资助:
Chong Lib, Na Lib, Limei Changb, Zhigang Gua,b(), Jian Zhanga,b
Received:
2021-12-05
Published:
2022-01-07
Contact:
Zhigang Gu
About author:
Supported by:
Share
Chong Li, Na Li, Limei Chang, Zhigang Gu, Jian Zhang. Research Progresses of Metal-organic Framework HKUST-1-Based Membranes in Gas Separations※[J]. Acta Chimica Sinica, 2022, 80(3): 340-358.
气体 | 混合组分气体通量/ (10–6 mol•m-2•s-1•Pa-1) | 单组分气体通量/ (10–6 mol•m-2•s-1•Pa-1) | 分离因子 | 理想分离因子 | Knudsen扩散系数 |
---|---|---|---|---|---|
H2 | 0.148 | 0.161 | 10.20 | 8.75 | 3.74 |
N2 | 0.0145 | 0.0184 | |||
H2 | 0.152 | 0.161 | 11.34 | 8.13 | 2.83 |
CH4 | 0.0134 | 0.0198 | |||
H2 | 0.143 | 0.161 | 10.07 | 9.53 | 4.69 |
CO2 | 0.0142 | 0.0169 |
气体 | 混合组分气体通量/ (10–6 mol•m-2•s-1•Pa-1) | 单组分气体通量/ (10–6 mol•m-2•s-1•Pa-1) | 分离因子 | 理想分离因子 | Knudsen扩散系数 |
---|---|---|---|---|---|
H2 | 0.148 | 0.161 | 10.20 | 8.75 | 3.74 |
N2 | 0.0145 | 0.0184 | |||
H2 | 0.152 | 0.161 | 11.34 | 8.13 | 2.83 |
CH4 | 0.0134 | 0.0198 | |||
H2 | 0.143 | 0.161 | 10.07 | 9.53 | 4.69 |
CO2 | 0.0142 | 0.0169 |
气体 | 渗透率/ (10-7 mol•m-2•s-1•Pa-1) | H2的理想 选择性 | H2的分 离因子 | |
---|---|---|---|---|
单组分 气体 | H2 | 7.48 | — | — |
CH4 | 2.57 | 2.9 | — | |
N2 | 2.00 | 3.7 | — | |
CO2 | 1.48 | 5.1 | — | |
混合 气体 | H2 | 5.16 | — | 3 |
CH4 | 1.68 | — | ||
H2 | 4.79 | — | 3.7 | |
N2 | 1.25 | — | ||
H2 | 6.74 | — | 4.6 | |
CO2 | 1.40 | — |
气体 | 渗透率/ (10-7 mol•m-2•s-1•Pa-1) | H2的理想 选择性 | H2的分 离因子 | |
---|---|---|---|---|
单组分 气体 | H2 | 7.48 | — | — |
CH4 | 2.57 | 2.9 | — | |
N2 | 2.00 | 3.7 | — | |
CO2 | 1.48 | 5.1 | — | |
混合 气体 | H2 | 5.16 | — | 3 |
CH4 | 1.68 | — | ||
H2 | 4.79 | — | 3.7 | |
N2 | 1.25 | — | ||
H2 | 6.74 | — | 4.6 | |
CO2 | 1.40 | — |
聚合物 | 负载量(φ/%) | 渗透性a/Barrer | 选择性 | |||
---|---|---|---|---|---|---|
O2 | CO2 | O2/N2 | CO2/CH4 | |||
Ultem 1000 | 21.32 | 1.15 | 4.34 | 7.62 | 42.16 | |
Matrimide 5218 | 19.67 | 5.20 | 24.8 | 6.66 | 37.8 | |
RODPA/TMPDA | 21.30 | 29.50 | 155.0 | 4.91 | 27.5 | |
6FDA/TMPDA | 22.53 | 318.0 | 1560 | 3.40 | 18.76 |
聚合物 | 负载量(φ/%) | 渗透性a/Barrer | 选择性 | |||
---|---|---|---|---|---|---|
O2 | CO2 | O2/N2 | CO2/CH4 | |||
Ultem 1000 | 21.32 | 1.15 | 4.34 | 7.62 | 42.16 | |
Matrimide 5218 | 19.67 | 5.20 | 24.8 | 6.66 | 37.8 | |
RODPA/TMPDA | 21.30 | 29.50 | 155.0 | 4.91 | 27.5 | |
6FDA/TMPDA | 22.53 | 318.0 | 1560 | 3.40 | 18.76 |
膜 | CO2渗透性b/ Barrer | CO2/N2 选择性 |
---|---|---|
Matrimid | 10.4±0.1 | 31.0±3.0 |
Matrimid+HKUST-1-0NH2 (w=10%) | 15.5±1.7 | 32.3±0.2 |
Matrimid+HKUST-1-0NH2 (w=20%) | 22.2±3.4 | 33.8±3.4 |
Matrimid+HKUST-1-25NH2 (w=10%) | 12.3±0.5 | 39.4±0.8 |
Matrimid+HKUST-1-25NH2 (w=20%) | 13.0±0.2 | 42.7±0.9 |
膜 | CO2渗透性b/ Barrer | CO2/N2 选择性 |
---|---|---|
Matrimid | 10.4±0.1 | 31.0±3.0 |
Matrimid+HKUST-1-0NH2 (w=10%) | 15.5±1.7 | 32.3±0.2 |
Matrimid+HKUST-1-0NH2 (w=20%) | 22.2±3.4 | 33.8±3.4 |
Matrimid+HKUST-1-25NH2 (w=10%) | 12.3±0.5 | 39.4±0.8 |
Matrimid+HKUST-1-25NH2 (w=20%) | 13.0±0.2 | 42.7±0.9 |
膜 | C2H4渗透性b/ Barrer | C2H4/C2H6 选择性 |
---|---|---|
ODPA-TMPDA | 6.3±0.4 | 3.9±0.4 |
ODPA-TMPDA+HKUST-1 (w=10%) | 13.6±1.7 | 3.6±0.3 |
ODPA-TMPDA+HKUST-1 (w=20%) | 16.0±0.2 | 3.4±0.2 |
6FDA-TMPDA | 108±7.2 | 2.5±0.1 |
6FDA-TMPDA+HKUST-1 (w=10%) | 148±11.8 | 2.5±0.5 |
6FDA-TMPDA+HKUST-1 (w=20%) | 183±3.8 | 2.4±0.1 |
膜 | C2H4渗透性b/ Barrer | C2H4/C2H6 选择性 |
---|---|---|
ODPA-TMPDA | 6.3±0.4 | 3.9±0.4 |
ODPA-TMPDA+HKUST-1 (w=10%) | 13.6±1.7 | 3.6±0.3 |
ODPA-TMPDA+HKUST-1 (w=20%) | 16.0±0.2 | 3.4±0.2 |
6FDA-TMPDA | 108±7.2 | 2.5±0.1 |
6FDA-TMPDA+HKUST-1 (w=10%) | 148±11.8 | 2.5±0.5 |
6FDA-TMPDA+HKUST-1 (w=20%) | 183±3.8 | 2.4±0.1 |
膜 | 渗透性a/Barrer | 理想选择性 | ||||
---|---|---|---|---|---|---|
He | CH4 | N2 | He/CH4 | He/N2 | ||
纯聚酰亚胺 | 23.1 | 0.18 | 0.23 | 131.1 | 98.6 | |
10% Cu-BTC-R | 36.09 | 0.18 | 0.24 | 200.5 | 150.3 | |
20% Cu-BTC-R | 51.9 | 0.19 | 0.26 | 273.5 | 199.9 | |
30% Cu-BTC-R | 57.03 | 0.19 | 0.27 | 300.1 | 211.2 | |
40% Cu-BTC-R | 66.4 | 0.18 | 0.25 | 369.1 | 265.8 | |
45% Cu-BTC-R | 74.5 | 0.35 | 0.34 | 212.9 | 219.2 | |
5% Cu-BTC-N | 27.2 | 0.2 | 0.25 | 136.2 | 109 | |
10% Cu-BTC-N | 34.8 | 0.29 | 0.33 | 120.03 | 105.4 | |
15% Cu-BTC-N | 40.1 | 0.52 | 0.49 | 77.1 | 81.8 | |
努森选择性 | — | — | — | 1.99 | 2.64 |
膜 | 渗透性a/Barrer | 理想选择性 | ||||
---|---|---|---|---|---|---|
He | CH4 | N2 | He/CH4 | He/N2 | ||
纯聚酰亚胺 | 23.1 | 0.18 | 0.23 | 131.1 | 98.6 | |
10% Cu-BTC-R | 36.09 | 0.18 | 0.24 | 200.5 | 150.3 | |
20% Cu-BTC-R | 51.9 | 0.19 | 0.26 | 273.5 | 199.9 | |
30% Cu-BTC-R | 57.03 | 0.19 | 0.27 | 300.1 | 211.2 | |
40% Cu-BTC-R | 66.4 | 0.18 | 0.25 | 369.1 | 265.8 | |
45% Cu-BTC-R | 74.5 | 0.35 | 0.34 | 212.9 | 219.2 | |
5% Cu-BTC-N | 27.2 | 0.2 | 0.25 | 136.2 | 109 | |
10% Cu-BTC-N | 34.8 | 0.29 | 0.33 | 120.03 | 105.4 | |
15% Cu-BTC-N | 40.1 | 0.52 | 0.49 | 77.1 | 81.8 | |
努森选择性 | — | — | — | 1.99 | 2.64 |
膜 | 渗透性a/Barrer | 混合气体选择性 | ||||
---|---|---|---|---|---|---|
He | CH4 | N2 | He/CH4 | He/N2 | ||
纯聚酰亚胺 | 22.7 | 0.19 | 0.23 | 119.4 | 98.7 | |
10% Cu-BTC-R | 35.8 | 0.19 | 0.25 | 188.4 | 143.2 | |
20% Cu-BTC-R | 50.2 | 0.21 | 0.26 | 239 | 193.1 | |
30% Cu-BTC-R | 55.2 | 0.2 | 0.29 | 276 | 190.3 | |
40% Cu-BTC-R | 64.3 | 0.19 | 0.26 | 338.4 | 247.3 | |
45% Cu-BTC-R | 70.4 | 0.38 | 0.35 | 185.2 | 201.1 | |
5% Cu-BTC-N | 25.7 | 0.21 | 0.25 | 122.3 | 102.8 | |
10% Cu-BTC-N | 30.5 | 0.32 | 0.35 | 95.3 | 87.1 | |
15% Cu-BTC-N | 37.5 | 0.56 | 0.51 | 66.7 | 73.5 |
膜 | 渗透性a/Barrer | 混合气体选择性 | ||||
---|---|---|---|---|---|---|
He | CH4 | N2 | He/CH4 | He/N2 | ||
纯聚酰亚胺 | 22.7 | 0.19 | 0.23 | 119.4 | 98.7 | |
10% Cu-BTC-R | 35.8 | 0.19 | 0.25 | 188.4 | 143.2 | |
20% Cu-BTC-R | 50.2 | 0.21 | 0.26 | 239 | 193.1 | |
30% Cu-BTC-R | 55.2 | 0.2 | 0.29 | 276 | 190.3 | |
40% Cu-BTC-R | 64.3 | 0.19 | 0.26 | 338.4 | 247.3 | |
45% Cu-BTC-R | 70.4 | 0.38 | 0.35 | 185.2 | 201.1 | |
5% Cu-BTC-N | 25.7 | 0.21 | 0.25 | 122.3 | 102.8 | |
10% Cu-BTC-N | 30.5 | 0.32 | 0.35 | 95.3 | 87.1 | |
15% Cu-BTC-N | 37.5 | 0.56 | 0.51 | 66.7 | 73.5 |
基底 | 合成方法 | 膜厚度/μm | 渗透率/ (10–7 mol•m–2•s–1•Pa–1) | 理想选择性 | 年份 | 参考文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2/N2 | H2/CO2 | H2/CH4 | |||||||||||||||
多孔氧化铝 | 原位生长 | 20 | 0.02 (190 ℃) | 23 (190 ℃) | 4.03 (190 ℃) | — | 2009 | [ | |||||||||
铜网 | 种子二次生长 | 60 | 12.7 | 4.6 | 4.52 | 7.8 | 2009 | [ | |||||||||
α-Al2O3 | 种子二次生长 | 25 | 18.5 | 3.7 | 3.5 | 2.4 | 2010 | [ | |||||||||
α-Al2O3 | SBS二次生长 | 25 | 7.48 | 3.7 | 5.1 | 2.9 | 2011 | [ | |||||||||
不锈钢网 | 原位生长 | — | 13.9 | 5.08 | 8.68 | 7.93 | 2012 | [ | |||||||||
α-Al2O3中空陶瓷纤维(HCFs) | 种子二次生长 | 13 | 0.725 | 8.66 | 13.56 | 6.19 | 2012 | [ | |||||||||
氢氧化铜纳米链(CHNs) | 种子生长法 | 5 | 15.8 | 3.7 | 4.7 | 2.8 | 2013 | [ | |||||||||
阳极氧化铝(AAO) | 种子二次生长 | 50 | 1.8 | 4.2 | 4.8 | 3 | 2013 | [ | |||||||||
α-Al2O3 | 反扩散法 | — | 0.998 (2 h) | 4.92 | 4.9 | 4.01 | 2013 | [ | |||||||||
— | 0.21 (4 h) | 28.6 | 3.82 | 24.6 | |||||||||||||
40 | 0.09 (6 h) | 123 | 3.69 | 153 | |||||||||||||
α-Al2O3 | 二次生长法 | 12.5 | 0.175 | 7.5 | 5.3 | 4.4 | 2013 | [ | |||||||||
聚偏氟乙烯(PVDF)中空纤维 | 压力辅助室温生长 | 6.5 | 20.1 | 3.3 | 4.2 | 2.5 | 2014 | [ | |||||||||
不锈钢 | 电沉积 | — | 8.5 | 3.9 | 4.6 | — | 2015 | [ | |||||||||
聚偏氟乙烯(PVDF)中空纤维 | 原位生长 | 43 | 84.6 | 5.87 | 7.3 | — | 2015 | [ | |||||||||
阳极氧化铝(AAO) | 种子二次生长 | 8 | 16.7 | 6.77 | 5.63 | 7.71 | 2016 | [ | |||||||||
多孔泡沫镍 | 纳米微结构辅助定向可控制备法 | 20 | 27.41 | 5.2 | 6 | 3.7 | 2016 | [ | |||||||||
50 | 19.00 | 4.4 | 6.2 | 3.1 | |||||||||||||
70 | 10.96 | 5 | 6.9 | 3.6 | |||||||||||||
100 | 7.81 | 5.1 | 7.5 | 3.8 | |||||||||||||
不锈钢网 | 原位生长 | — | 7.61 | 5.6 | 9.74 | 6.7 | 2017 | [ | |||||||||
纳米多孔聚合物(np-PET) | 液相外延生长(LPE) | — | 2.4 | 11.14 | 1.2 | 10.66 | 2018 | [ | |||||||||
SiO2 | 原位生长 | — | 1.61 | 10.2 | 10.07 | 11.34 | 2018 | [ | |||||||||
氧化石墨烯(GO) | 原位生长 | 0.1~0.3 | 5.77 | — | 73.2 | — | 2018 | [ | |||||||||
Al2O3 | 原位生长 | 72 | 11.9 | 9.69 | 12.04 | 7.77 | 2020 | [ |
基底 | 合成方法 | 膜厚度/μm | 渗透率/ (10–7 mol•m–2•s–1•Pa–1) | 理想选择性 | 年份 | 参考文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2/N2 | H2/CO2 | H2/CH4 | |||||||||||||||
多孔氧化铝 | 原位生长 | 20 | 0.02 (190 ℃) | 23 (190 ℃) | 4.03 (190 ℃) | — | 2009 | [ | |||||||||
铜网 | 种子二次生长 | 60 | 12.7 | 4.6 | 4.52 | 7.8 | 2009 | [ | |||||||||
α-Al2O3 | 种子二次生长 | 25 | 18.5 | 3.7 | 3.5 | 2.4 | 2010 | [ | |||||||||
α-Al2O3 | SBS二次生长 | 25 | 7.48 | 3.7 | 5.1 | 2.9 | 2011 | [ | |||||||||
不锈钢网 | 原位生长 | — | 13.9 | 5.08 | 8.68 | 7.93 | 2012 | [ | |||||||||
α-Al2O3中空陶瓷纤维(HCFs) | 种子二次生长 | 13 | 0.725 | 8.66 | 13.56 | 6.19 | 2012 | [ | |||||||||
氢氧化铜纳米链(CHNs) | 种子生长法 | 5 | 15.8 | 3.7 | 4.7 | 2.8 | 2013 | [ | |||||||||
阳极氧化铝(AAO) | 种子二次生长 | 50 | 1.8 | 4.2 | 4.8 | 3 | 2013 | [ | |||||||||
α-Al2O3 | 反扩散法 | — | 0.998 (2 h) | 4.92 | 4.9 | 4.01 | 2013 | [ | |||||||||
— | 0.21 (4 h) | 28.6 | 3.82 | 24.6 | |||||||||||||
40 | 0.09 (6 h) | 123 | 3.69 | 153 | |||||||||||||
α-Al2O3 | 二次生长法 | 12.5 | 0.175 | 7.5 | 5.3 | 4.4 | 2013 | [ | |||||||||
聚偏氟乙烯(PVDF)中空纤维 | 压力辅助室温生长 | 6.5 | 20.1 | 3.3 | 4.2 | 2.5 | 2014 | [ | |||||||||
不锈钢 | 电沉积 | — | 8.5 | 3.9 | 4.6 | — | 2015 | [ | |||||||||
聚偏氟乙烯(PVDF)中空纤维 | 原位生长 | 43 | 84.6 | 5.87 | 7.3 | — | 2015 | [ | |||||||||
阳极氧化铝(AAO) | 种子二次生长 | 8 | 16.7 | 6.77 | 5.63 | 7.71 | 2016 | [ | |||||||||
多孔泡沫镍 | 纳米微结构辅助定向可控制备法 | 20 | 27.41 | 5.2 | 6 | 3.7 | 2016 | [ | |||||||||
50 | 19.00 | 4.4 | 6.2 | 3.1 | |||||||||||||
70 | 10.96 | 5 | 6.9 | 3.6 | |||||||||||||
100 | 7.81 | 5.1 | 7.5 | 3.8 | |||||||||||||
不锈钢网 | 原位生长 | — | 7.61 | 5.6 | 9.74 | 6.7 | 2017 | [ | |||||||||
纳米多孔聚合物(np-PET) | 液相外延生长(LPE) | — | 2.4 | 11.14 | 1.2 | 10.66 | 2018 | [ | |||||||||
SiO2 | 原位生长 | — | 1.61 | 10.2 | 10.07 | 11.34 | 2018 | [ | |||||||||
氧化石墨烯(GO) | 原位生长 | 0.1~0.3 | 5.77 | — | 73.2 | — | 2018 | [ | |||||||||
Al2O3 | 原位生长 | 72 | 11.9 | 9.69 | 12.04 | 7.77 | 2020 | [ |
基底 | 方法 | 膜厚度/μm | 渗透率/ (10–7 mol•m–2•s–1•Pa–1) | 理想选择性 | 年份 | 参考 文献 | |
---|---|---|---|---|---|---|---|
CH4/N2 | CH4/CO2 | ||||||
α-Al2O3 | 种子二次生长 | 25 | 8 | 1.57 | 1.57 | 2010 | [ |
α-Al2O3 | SBS二次生长 | 25 | 2.57 | 1.28 | 1.76 | 2011 | [ |
α-Al2O3中空陶瓷纤维(HCFs) | 种子二次生长 | 13 | 0.125 | 1.24 | 2.27 | 2012 | [ |
不锈钢网 | 原位生长 | — | 1.75 | 0.64 | 1.09 | 2012 | [ |
阳极氧化铝(AAO) | 种子二次生长 | 50 | 0.6 | 1.4 | 1.6 | 2013 | [ |
氢氧化铜纳米链(CHNs) | 种子二次生长法 | 30 | 11.2 | 1.32 | 1.71 | 2013 | [ |
氢氧化铜纳米链 (CHNs) | 种子生长法 | 5 | 6.32 | 1.32 | 1.68 | 2013 | [ |
α-Al2O3 | 二次生长法 | 12.5 | 0.04 | 1.7 | 1.2 | 2013 | [ |
α-Al2O3 | 反扩散法 | — | 0.249 (2 h) | 1.23 | 1.22 | 2013 | [ |
— | 0.00831 (4 h) | 1.16 | 0.155 | ||||
40 | 0.00059 (6 h) | 0.804 | 0.024 | ||||
氢氧化铜纳米链(CHNs) | 种子生长法 | 2.5 | 7.4(立方体) | — | 1.67(立方体) | 2014 | [ |
5 | 6.4(立方八面体) | — | 1.67(立方八面体) | ||||
5 | 5.6(八面体) | — | 1.64(八面体) | ||||
多孔泡沫镍 | 纳米微结构辅助定向可控制备法 | 20 | 7.32 | 1.39 | 1.61 | 2016 | [ |
50 | 6.10 | 1.42 | 1.99 | ||||
70 | 3.00 | 1.38 | 1.9 | ||||
100 | 2.08 | 1.35 | |||||
SiO2 | 原位生长 | — | 0.198 | 1.08 | 1.17 | 2018 | [ |
Al2O3 | 原位生长 | 72 | 7.42 | 1.27 | 1.92 | 2020 | [ |
基底 | 方法 | 膜厚度/μm | 渗透率/ (10–7 mol•m–2•s–1•Pa–1) | 理想选择性 | 年份 | 参考 文献 | |
---|---|---|---|---|---|---|---|
CH4/N2 | CH4/CO2 | ||||||
α-Al2O3 | 种子二次生长 | 25 | 8 | 1.57 | 1.57 | 2010 | [ |
α-Al2O3 | SBS二次生长 | 25 | 2.57 | 1.28 | 1.76 | 2011 | [ |
α-Al2O3中空陶瓷纤维(HCFs) | 种子二次生长 | 13 | 0.125 | 1.24 | 2.27 | 2012 | [ |
不锈钢网 | 原位生长 | — | 1.75 | 0.64 | 1.09 | 2012 | [ |
阳极氧化铝(AAO) | 种子二次生长 | 50 | 0.6 | 1.4 | 1.6 | 2013 | [ |
氢氧化铜纳米链(CHNs) | 种子二次生长法 | 30 | 11.2 | 1.32 | 1.71 | 2013 | [ |
氢氧化铜纳米链 (CHNs) | 种子生长法 | 5 | 6.32 | 1.32 | 1.68 | 2013 | [ |
α-Al2O3 | 二次生长法 | 12.5 | 0.04 | 1.7 | 1.2 | 2013 | [ |
α-Al2O3 | 反扩散法 | — | 0.249 (2 h) | 1.23 | 1.22 | 2013 | [ |
— | 0.00831 (4 h) | 1.16 | 0.155 | ||||
40 | 0.00059 (6 h) | 0.804 | 0.024 | ||||
氢氧化铜纳米链(CHNs) | 种子生长法 | 2.5 | 7.4(立方体) | — | 1.67(立方体) | 2014 | [ |
5 | 6.4(立方八面体) | — | 1.67(立方八面体) | ||||
5 | 5.6(八面体) | — | 1.64(八面体) | ||||
多孔泡沫镍 | 纳米微结构辅助定向可控制备法 | 20 | 7.32 | 1.39 | 1.61 | 2016 | [ |
50 | 6.10 | 1.42 | 1.99 | ||||
70 | 3.00 | 1.38 | 1.9 | ||||
100 | 2.08 | 1.35 | |||||
SiO2 | 原位生长 | — | 0.198 | 1.08 | 1.17 | 2018 | [ |
Al2O3 | 原位生长 | 72 | 7.42 | 1.27 | 1.92 | 2020 | [ |
基底 | 方法 | 膜厚度/μm | 渗透率/ (10–7 mol•m–2•s–1•Pa–1) | CO2/N2理想 选择性 | 年份 | 参考 文献 |
---|---|---|---|---|---|---|
铜网 | 水热法 | — | 2.81 | 1 | 2009 | [ |
α-Al2O3 | 种子二次生长 | 25 | 5 | 0.64 | 2010 | [ |
α-Al2O3 | SBS二次生长 | 25 | 1.48 | 0.73 | 2011 | [ |
α-Al2O3中空陶瓷纤维(HCFs) | 种子二次生长 | 13 | 0.055 | 0.54 | 2012 | [ |
多孔六钛酸钾圆盘 | 原位溶剂热生长 | 25~30 | 4.118 | 0.76 | 2012 | [ |
不锈钢网 | 原位生长 | — | 1.6 | 0.59 | 2012 | [ |
氢氧化铜纳米链(CHNs) | 种子二次生长法 | 30 | 6.54 | 0.77 | 2013 | [ |
氢氧化铜纳米链(CHNs) | 种子二次生长法 | 5 | 3.76 | 0.79 | 2013 | [ |
α-Al2O3 | 二次生长法 | 12.5 | 0.033 | 1.42 | 2013 | [ |
α-Al2O3 | 反扩散法 | — | 0.204 (2 h) | 1 | 2013 | [ |
— | 0.0536 (4 h) | 7.49 | ||||
40 | 0.0245 (6 h) | 33.33 | ||||
聚偏氟乙烯(PVDF)中空纤维 | 压力辅助室温生长 | 6.5 | 4.79 | 0.79 | 2014 | [ |
PVDF中空纤维 | 原位生长 | 43 | 11.58 | 0.8 | 2015 | [ |
多孔泡沫镍 | 纳米微结构辅助定向可控制备法 | ≈20 | 4.54 | 0.86 | 2016 | [ |
≈50 | 3.07 | 0.712 | ||||
70 | 1.58 | 0.728 | ||||
100 | 1.04 | 0.675 | ||||
不锈钢网 | 原位生长 | — | 0.765 | 0.57 | 2017 | [ |
SiO2 | 原位生长 | — | 0.169 | 0.92 | 2018 | ]110] |
Al2O3 | 原位生长 | 72 | 3.87 | 0.66 | 2020 | [ |
纳米多孔聚合物(np-PET) | 液相外延(LPE)生长 | — | 0.285 | 13.2 | 2020 | [ |
基底 | 方法 | 膜厚度/μm | 渗透率/ (10–7 mol•m–2•s–1•Pa–1) | CO2/N2理想 选择性 | 年份 | 参考 文献 |
---|---|---|---|---|---|---|
铜网 | 水热法 | — | 2.81 | 1 | 2009 | [ |
α-Al2O3 | 种子二次生长 | 25 | 5 | 0.64 | 2010 | [ |
α-Al2O3 | SBS二次生长 | 25 | 1.48 | 0.73 | 2011 | [ |
α-Al2O3中空陶瓷纤维(HCFs) | 种子二次生长 | 13 | 0.055 | 0.54 | 2012 | [ |
多孔六钛酸钾圆盘 | 原位溶剂热生长 | 25~30 | 4.118 | 0.76 | 2012 | [ |
不锈钢网 | 原位生长 | — | 1.6 | 0.59 | 2012 | [ |
氢氧化铜纳米链(CHNs) | 种子二次生长法 | 30 | 6.54 | 0.77 | 2013 | [ |
氢氧化铜纳米链(CHNs) | 种子二次生长法 | 5 | 3.76 | 0.79 | 2013 | [ |
α-Al2O3 | 二次生长法 | 12.5 | 0.033 | 1.42 | 2013 | [ |
α-Al2O3 | 反扩散法 | — | 0.204 (2 h) | 1 | 2013 | [ |
— | 0.0536 (4 h) | 7.49 | ||||
40 | 0.0245 (6 h) | 33.33 | ||||
聚偏氟乙烯(PVDF)中空纤维 | 压力辅助室温生长 | 6.5 | 4.79 | 0.79 | 2014 | [ |
PVDF中空纤维 | 原位生长 | 43 | 11.58 | 0.8 | 2015 | [ |
多孔泡沫镍 | 纳米微结构辅助定向可控制备法 | ≈20 | 4.54 | 0.86 | 2016 | [ |
≈50 | 3.07 | 0.712 | ||||
70 | 1.58 | 0.728 | ||||
100 | 1.04 | 0.675 | ||||
不锈钢网 | 原位生长 | — | 0.765 | 0.57 | 2017 | [ |
SiO2 | 原位生长 | — | 0.169 | 0.92 | 2018 | ]110] |
Al2O3 | 原位生长 | 72 | 3.87 | 0.66 | 2020 | [ |
纳米多孔聚合物(np-PET) | 液相外延(LPE)生长 | — | 0.285 | 13.2 | 2020 | [ |
基底 | 合成方法 | 膜厚度/μm | 渗透率/(10–7 mol•m–2•s–1•Pa–1) | 理想选择性 | 年份 | 参考文献 | ||
---|---|---|---|---|---|---|---|---|
He/N2 | He/CO2 | He/CH4 | ||||||
多孔六钛酸钾圆盘 | 原位溶剂热生长 | 25~30 | 14 | 2.6 | 3.4 | 2.07 | 2012 | [ |
α-Al2O3 | 反扩散法 | — | 0.746 (2 h) | 3.67 | 3.66 | 2.99 | 2013 | [ |
— | 0.169 (4 h) | 23.64 | 3.16 | 20.33 | ||||
40 | 0.0767 (6 h) | 109.8 | 3.29 | 136.6 | ||||
聚酰亚胺 | 混合基质膜(MMMs) | 30 | 2.224×10–7 | 98.6 | — | 131.1 | 2020 | [ |
基底 | 合成方法 | 膜厚度/μm | 渗透率/(10–7 mol•m–2•s–1•Pa–1) | 理想选择性 | 年份 | 参考文献 | ||
---|---|---|---|---|---|---|---|---|
He/N2 | He/CO2 | He/CH4 | ||||||
多孔六钛酸钾圆盘 | 原位溶剂热生长 | 25~30 | 14 | 2.6 | 3.4 | 2.07 | 2012 | [ |
α-Al2O3 | 反扩散法 | — | 0.746 (2 h) | 3.67 | 3.66 | 2.99 | 2013 | [ |
— | 0.169 (4 h) | 23.64 | 3.16 | 20.33 | ||||
40 | 0.0767 (6 h) | 109.8 | 3.29 | 136.6 | ||||
聚酰亚胺 | 混合基质膜(MMMs) | 30 | 2.224×10–7 | 98.6 | — | 131.1 | 2020 | [ |
[1] |
Henis, J. M. S. Commercial and Practical Aspects of Gas Separation Membranes, Chap. 10, Eds.: Paul, D. R.; Yampol'skii, Y. P. CRC Press, Boca Raton, Florida, 1994, p. 72.
|
[2] |
Baker, R. W. Ind. Eng. Chem. Res. 2002, 41, 1393.
doi: 10.1021/ie0108088 |
[3] |
Yao, J.; Wang, H. Chem. Soc. Rev. 2014, 43, 4470.
doi: 10.1039/C3CS60480B |
[4] |
Norwell, M. Handbook of Compressed Gases, Kluwer Academic Publishers, New York, 1999, pp. 7-9.
|
[5] |
Ruthven, D. M.; Shamsuzzaman, F.; Knaebel, K. S. Pressure Swing Adsorption, VCH Publishers, Inc., Florida, 1993, pp. 1-7.
|
[6] |
Hedin, N.; Andersson, L.; Bergström, L.; Yan, J. Appl. Energy 2013, 104, 418.
doi: 10.1016/j.apenergy.2012.11.034 |
[7] |
Aaron, D.; Tsouris, C. Sep. Sci. Technol. 2011, 40, 321.
doi: 10.1081/SS-200042244 |
[8] |
Baker, R. W.; Lokhandwala, K. Ind. Eng. Chem. Res. 2008, 47, 2109.
doi: 10.1021/ie071083w |
[9] |
Baker, R. W. Membrane Technology and Applications, John Wiley and Sons Ltd, California, 2012, pp. 325-326.
|
[10] |
Perez, E. V.; Karunaweera, C.; Musselman, I. H.; Balkus, K. J. Jr.; Ferraris, J. P. Processes 2016, 4, 1.
doi: 10.3390/pr4010001 |
[11] |
Tian, Y.; Liang, J.; Shen, Q.; Wang, Z.; Jin, J. Membr. Sci. Technol. 2019, 39, 125.
|
[12] |
Wu, C. H.; Zhang, K. X.; Wang, H. L.; Fan, Y. Q.; Zhang, S. W.; He, S. F.; Wang, F.; Tao, Y.; Zhao, X. W.; Zhang, Y. B.; Ma, Y. H.; Lee, Y. J.; Li, T. J. Am. Chem. Soc. 2020, 142, 18503.
doi: 10.1021/jacs.0c07378 |
[13] |
Baker, R. W.; Low, B. T. Macromolecules 2014, 47, 6999.
doi: 10.1021/ma501488s |
[14] |
Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Nano Res. 2021, 14, 1.
doi: 10.1007/s12274-020-3082-4 |
[15] |
Liu, Y.; Ban, Y.; Yang, W. Adv. Mater. 2017, 29, 1606949.
doi: 10.1002/adma.v29.31 |
[16] |
Robeson, L. M. J. Membr. Sci 1991, 62, 165.
doi: 10.1016/0376-7388(91)80060-J |
[17] |
Robeson, L. M.; Burgoyne, W. F.; Langsam, M.; Savoca, A. C.; Tien, C. F. Polymer 1994, 35, 4970.
doi: 10.1016/0032-3861(94)90651-3 |
[18] |
Freeman, B. D. Macromolecules 1999, 32, 375.
doi: 10.1021/ma9814548 |
[19] |
Robeson, L. M. J. Membr. Sci 2008, 320, 390.
doi: 10.1016/j.memsci.2008.04.030 |
[20] |
Wang, S.; Tian, Z.; Feng, J.; Wu, H.; Li, Y.; Liu, Y.; Li, X.; Xin, Q.; Jiang, Z. J. Membr. Sci. 2015, 473, 310.
doi: 10.1016/j.memsci.2014.09.035 |
[21] |
Zacher, D.; Shekhah, O.; Woll, C.; Fischer, R. A. Chem. Soc. Rev. 2009, 38, 1418.
doi: 10.1039/b805038b |
[22] |
Shekhah, O.; Liu, J.; Fischer, R. A.; Woll, C. Chem. Soc. Rev. 2011, 40, 1081.
doi: 10.1039/c0cs00147c pmid: 21225034 |
[23] |
Lin, R. B.; Zhang, Z. J.; Chen, B. L. Acc. Chem. Res. 2021, 54, 3362.
doi: 10.1021/acs.accounts.1c00328 |
[24] |
Hosono, N.; Uemura, T. Acc. Chem. Res. 2021, 54, 3593.
doi: 10.1021/acs.accounts.1c00377 |
[25] |
Saraci, F.; Quezada-Novoa, V.; Donnarumma, P. R.; Howarth, A. J. Chem. Soc. Rev. 2020, 49, 7949.
doi: 10.1039/D0CS00292E |
[26] |
Feng, L.; Wang, K. Y.; Lv, X. L.; Yan, T. H.; Zhou, H. C. Natl. Sci. Rev. 2020, 7, 1743.
doi: 10.1093/nsr/nwz170 |
[27] |
Zhang, J.; Kosaka, W.; Kitagawa, Y.; Miyasaka, H. Nat. Chem. 2021, 13, 191.
doi: 10.1038/s41557-020-00577-y pmid: 33257884 |
[28] |
Xu, M. M.; Chen, Q.; Xie, L. H.; Li, J. R. Coord. Chem. Rev. 2020, 421, 213421.
doi: 10.1016/j.ccr.2020.213421 |
[29] |
Yoo, D. K.; Woo, H. C.; Jhung, S. H. Coord. Chem. Rev. 2020, 422, 213477.
doi: 10.1016/j.ccr.2020.213477 |
[30] |
Yuan, N.; Zhang, X. L.; Wang, L. S. Coord. Chem. Rev. 2020, 421, 213442.
doi: 10.1016/j.ccr.2020.213442 |
[31] |
Cui, Z. M.; Fan, T.; Chen, L. Y.; Fang, R. Q.; Li, C. M.; Li, Y. W. Sci. China. Chem. 2021, 64, 109.
doi: 10.1007/s11426-020-9881-7 |
[32] |
Feng, L.; Wang, K. Y.; Day, G. S.; Ryder, M. R.; Zhou, H. C. Chem. Rev. 2020, 120, 13087.
doi: 10.1021/acs.chemrev.0c00722 |
[33] |
Terzopoulou, A.; Nicholas, J. D.; Chen, X. Z.; Nelson, B. J.; Pane, S.; Puigmarti-Luis, J. Chem. Rev. 2020, 120, 11175.
doi: 10.1021/acs.chemrev.0c00535 pmid: 33054168 |
[34] |
Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu, Q. Chem. Rev. 2020, 120, 12089.
doi: 10.1021/acs.chemrev.9b00757 |
[35] |
Zhang, X.; Chen, Z. J.; Liu, X. Y.; Hanna, S. L.; Wang, X. J.; Taheri-Ledari, R.; Maleki, A.; Li, P.; Farha, O. K. Chem. Soc. Rev. 2020, 49, 7406.
doi: 10.1039/D0CS00997K |
[36] |
Chong, S.; Lee, S.; Kim, B.; Kim, J. Coord. Chem. Rev. 2020, 423, 213487.
doi: 10.1016/j.ccr.2020.213487 |
[37] |
Daglar, H.; Keskin, S. Coord. Chem. Rev. 2020, 422, 213470.
doi: 10.1016/j.ccr.2020.213470 |
[38] |
Hackler, R. A.; Pandharkar, R.; Ferrandon, M. S.; Kim, I. S.; Vermeulen, N. A.; Gallington, L. C.; Chapman, K. W.; Farha, O. K.; Cramer, C. J.; Sauer, J.; Gagliardi, L.; Martinson, A. B. F.; Delferro, M. J. Am. Chem. Soc. 2020, 142, 20380.
doi: 10.1021/jacs.0c08641 |
[39] |
Rowsell, J. L. C.; Yaghi, O. M.; Chen, B.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S. Angew. Chem., nt. Ed. 2005, 44, 4647.
|
[40] |
Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127.
doi: 10.1126/science.1083440 |
[41] |
Zhang, Y.; Lv, L. S.; Li, W. J.; Zhang, Y.; Lu, N.; Han, X. J. Chin. Chem. Soc. 2021, 68, 610.
|
[42] |
Aniruddha, R.; Sreedhar, I.; Reddy, B. M. J. CO2 Util 2020, 42, 101297.
|
[43] |
Cui, H.; Ye, Y. X.; Liu, T.; Alothman, Z. A.; Alduhaish, O.; Lin, R. B.; Chen, B. L. Inorg. Chem. 2020, 59, 17143.
doi: 10.1021/acs.inorgchem.0c02427 |
[44] |
Bernardo, P.; Drioli, E.; Golemme, G. Ind. Eng. Chem. Res. 2009, 48, 4638.
doi: 10.1021/ie8019032 |
[45] |
Ursueguia, D.; Diaz, E.; Vega, A.; Ordonez, S. Sep. Purif. Technol. 2020, 251, 117374.
doi: 10.1016/j.seppur.2020.117374 |
[46] |
Wang, X.; Zhang, F. F.; Li, S. Y.; Chen, Y. S.; Wang, Z.; Hou, X. Y.; Chen, X. L.; Tang, L.; Yue, E. L.; Wang, J. J. J. Solid State Chem. 2020, 292, 121670.
doi: 10.1016/j.jssc.2020.121670 |
[47] |
Li, G.-P.; Li, Z.-Z.; Xie, H.-F.; Fu, Y.-L.; Wang, Y.-Y. Chin. J. Struc. Chem. 2021, 40, 1047. (in Chinese)
|
李高鹏, 李贞贞, 谢红芳, 付云龙, 王尧宇, 结构化学, 2021, 40, 1047.)
|
|
[48] |
Li, X.; Yan, B.; Huang, W.; Fu, L.; Sun, X.; Lv, A. Acta Chim. Sinica 2021, 79, 459.. (in Chinese)
doi: 10.6023/A20100494 |
李旭飞, 闫保有, 黄维秋, 浮历沛, 孙宪航, 吕爱华, 化学学报, 2021, 79, 459.)
doi: 10.6023/A20100494 |
|
[49] |
Lyu, L.; Zhao, Y.; Wei, Y.; Wang, H. Acta Chim. Sinica 2021, 79, 869. (in Chinese)
doi: 10.6023/A21030099 |
(吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.)
doi: 10.6023/A21030099 |
|
[50] |
Wu, X.-L.; Li, Z.-J.; Tang, F.-D.; Qian, N.; Chu, X.-X.; Liu, W. Chin. J. Struc. Chem. 2021, 40, 85. (in Chinese)
|
(吴小玲, 李子建, 唐方东, 钱楠, 楚鑫新, 刘卫, 结构化学, 2021, 40, 85.)
|
|
[51] |
Zhang, H.; Li, G.; Zhang, K.; Liao, C. Acta Chim. Sinica 2017, 75, 841. (in Chinese)
doi: 10.6023/A17040168 |
(张贺, 李国良, 张可刚, 廖春阳, 化学学报, 2017, 75, 841.)
doi: 10.6023/A17040168 |
|
[52] |
Park, Y. K.; Choi, S. B.; Kim, H.; Kim, K.; Won, B.-H.; Choi, K.; Choi, J.-S.; Ahn, W.-S.; Won, N.; Kim, S.; Jung, D. H.; Choi, S.-H.; Kim, G.-H.; Cha, S.-S.; Jhon, Y. H.; Yang, J. K.; Kim, J. Angew. Chem., nt. Ed. 2007, 46, 8230.
|
[53] |
Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regí, M. A.; Sebban, M.; Taulelle, F.; Férey, G. R. J. Am. Chem. Soc. 2008, 130, 6774.
doi: 10.1021/ja710973k pmid: 18454528 |
[54] |
Férey, G. Chem. Soc. Rev. 2008, 37, 191.
doi: 10.1039/B618320B |
[55] |
Serre, C.; Millange, F.; Surblé, S.; Férey, G. Angew. Chem., nt. Ed. 2004, 43, 6285.
|
[56] |
Yang, T.; Cui, Y.; Chen, H.; Li, W. Acta Chim. Sinica 2017, 75, 339. (in Chinese)
doi: 10.6023/A16110592 |
(杨涛, 崔亚男, 陈怀银, 李伟华, 化学学报, 2017, 75, 339.)
doi: 10.6023/A16110592 |
|
[57] |
Hromadka, J.; Tokay, B.; Correia, R.; Morgan, S. P.; Korposh, S. Sens. Actuators, B 2018, 255, 2483.
doi: 10.1016/j.snb.2017.09.041 |
[58] |
Hu, Z.; Tao, C.-A.; Liu, H.; Zou, X.; Zhu, H.; Wang, J. J. Mater. Chem. A 2014, 2, 14222.
doi: 10.1039/C4TA01916D |
[59] |
Szilagyi, P. A.; Westerwaal, R. J.; van de Krol, R.; Geerlings, H.; Dam, B. J. Mater. Chem. C 2013, 1, 8146.
doi: 10.1039/c3tc31749h |
[60] |
Liu, J.; Redel, E.; Walheim, S.; Wang, Z.; Oberst, V.; Liu, J.; Heissler, S.; Welle, A.; Moosmann, M.; Scherer, T.; Bruns, M.; Gliemann, H.; Woell, C. Chem. Mater. 2015, 27, 1991.
doi: 10.1021/cm503908g |
[61] |
Lu, G.; Hupp, J. T. J. Am. Chem. Soc. 2010, 132, 7832.
doi: 10.1021/ja101415b |
[62] |
Gao, Z.; Wang, C.; Li, J.; Zhu, Y.; Zhang, Z.; Hu, W. Acta Phys.-Chim. Sin. 2020, 37, 2010025. (in Chinese)
|
(高增强, 王聪勇, 李俊俊, 朱亚廷, 张志成, 胡文平, 物理化学学报, 2020, 37, 2010025.)
|
|
[63] |
Huang, G.; Chen, Y.; Jiang, H. Acta Chim. Sinica 2016, 74, 113. (in Chinese)
doi: 10.6023/A15080547 |
(黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.)
doi: 10.6023/A15080547 |
|
[64] |
Schlichte, K.; Kratzke, T.; Kaskel, S. Microporous Mesoporous Mater. 2004, 73, 81.
doi: 10.1016/j.micromeso.2003.12.027 |
[65] |
Zhao, M.; Deng, K.; He, L.; Liu, Y.; Li, G.; Zhao, H.; Tang, Z. J. Am. Chem. Soc. 2014, 136, 1738.
doi: 10.1021/ja411468e |
[66] |
Martis, M.; Mori, K.; Fujiwara, K.; Ahn, W.-S.; Yamashita, H. J. Phys. Chem. C 2013, 117, 22805.
doi: 10.1021/jp4069027 |
[67] |
Nguyen, L. T. L.; Le, K. K. A.; Truong, H. X.; Phan, N. T. S. Catal. Sci. Technol. 2012, 2, 521.
doi: 10.1039/C1CY00386K |
[68] |
Fei, H.; Cohen, S. M. J. Am. Chem. Soc. 2015, 137, 2191.
doi: 10.1021/ja5126885 |
[69] |
Nasalevich, M. A.; van der Veen, M.; Kapteijn, F.; Gascon, J. CrystEngComm 2014, 16, 4919.
doi: 10.1039/C4CE00032C |
[70] |
Pullen, S.; Fei, H.; Orthaber, A.; Cohen, S. M.; Ott, S. J. Am. Chem. Soc. 2013, 135, 16997.
doi: 10.1021/ja407176p pmid: 24116734 |
[71] |
Nguyen, T. N.; Kampouri, S.; Valizadeh, B.; Luo, W.; Ongari, D.; Planes, O. M.; Zuttel, A.; Smit, B.; Stylianou, K. C. ACS Appl. Mater. Interfaces 2018, 10, 30035.
doi: 10.1021/acsami.8b10010 |
[72] |
Maina, J. W.; Schutz, J. A.; Grundy, L.; Des Ligneris, E.; Yi, Z.; Kong, L.; Pozo-Gonzalo, C.; Ionescu, M.; Dumee, L. F. ACS Appl. Mater. Interfaces 2017, 9, 35010.
doi: 10.1021/acsami.7b11150 |
[73] |
Ohara, H.; Yamamoto, S.; Kuzuhara, D.; Koganezawa, T.; Oikawa, H.; Mitsuishi, M. ACS Appl. Mater. Interfaces 2020, 12, 50784.
doi: 10.1021/acsami.0c13016 |
[74] |
Santos, J. C. C.; Pramudya, Y.; Krstic, M.; Chen, D. H.; Neumeier, B. L.; Feldmann, C.; Wenzel, W.; Redel, E. ACS Appl. Mater. Interfaces 2020, 12, 52166.
doi: 10.1021/acsami.0c15392 |
[75] |
Bo, R. H.; Taheri, M.; Liu, B. R.; Ricco, R.; Chen, H. J.; Amenitsch, H.; Fusco, Z.; Tsuzuki, T.; Yu, G. H.; Ameloot, R.; Falcaro, P.; Tricoli, A. Adv. Sci. 2020, 7, 2002368.
doi: 10.1002/advs.v7.24 |
[76] |
Liu, Y. X.; Wei, Y. N.; Liu, M. H.; Bai, Y. C.; Wang, X. Y.; Shang, S. C.; Chen, J. Y.; Liu, Y. Q. Angew. Chem., nt. Ed. 2021, 60, 2887.
|
[77] |
Sun, S. J.; Xiao, Y. L.; He, L. Q.; Tong, Y. X.; Liu, D. X.; Zhang, J. Y. ChemistrySelect 2020, 5, 13855.
doi: 10.1002/slct.v5.44 |
[78] |
Wang, D.-W.; Gu, Z.-G.; Zhang, J. Acta Phys. Sin. 2020, 69, 126801. (in Chinese)
doi: 10.7498/aps |
(王大为, 谷志刚, 张健, 物理学报, 2020, 69, 126801.)
|
|
[79] |
Shah, M.; McCarthy, M. C.; Sachdeva, S.; Lee, A. K.; Jeong, H.-K. Ind. Eng. Chem. Res. 2012, 51, 2179.
doi: 10.1021/ie202038m |
[80] |
Kang, Z.; Fan, L.; Sun, D. J. Mater. Chem. A 2017, 5, 10073.
doi: 10.1039/C7TA01142C |
[81] |
Shekhah, O.; Chernikova, V.; Belmabkhout, Y.; Eddaoudi, M. Crystals 2018, 8, 412.
doi: 10.3390/cryst8110412 |
[82] |
Shi, Y.; Liang, B.; Lin, R.-B.; Zhang, C.; Chen, B. Trends. Chem. 2020, 2, 254.
doi: 10.1016/j.trechm.2020.01.002 |
[83] |
Hou, D.; Liu, D.; Yang, Q.; Zhong, C. Chem. Ind. Eng. Prog. 2015, 34, 2907.
|
[84] |
Ma, L.; Svec, F.; Lv, Y.; Tan, T. Chem.-Asian J. 2019, 14, 3502.
doi: 10.1002/asia.v14.20 |
[85] |
Bi, X. Y.; Zhang, Y. A.; Zhang, F.; Zhang, S. X.; Wang, Z. G.; Jin, J. ACS Appl. Mater. Interfaces 2020, 12, 49101.
doi: 10.1021/acsami.0c14639 |
[86] |
Qiu, S.; Xue, M.; Zhu, G. Chem. Soc. Rev. 2014, 43, 6116.
doi: 10.1039/C4CS00159A |
[87] |
Shah, M.; McCarthy, M. C.; Sachdeva, S.; Lee, A. K.; Jeong, H.-K. Ind. Eng. Chem. Res. 2012, 51, 2179.
doi: 10.1021/ie202038m |
[88] |
Chui, S. S.; Lo, S. M.; Charmant, J. P.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148.
pmid: 10024237 |
[89] |
Wehring, M.; Gascon, J.; Dubbeldam, D.; Kapteijn, F.; Snurr, R. Q.; Stallmach, F. J. Phys. Chem. C 2010, 114, 10527.
doi: 10.1021/jp102212w |
[90] |
Chen, Y.; Mu, X.; Lester, E.; Wu, T. Prog. Nat. Sci.: Mater. Int. 2018, 28, 584.
doi: 10.1016/j.pnsc.2018.08.002 |
[91] |
Al-Janabi, N.; Hill, P.; Torrente-Murciano, L.; Garforth, A.; Gorgojo, P.; Siperstein, F.; Fan, X. Chem. Eng. J. 2015, 281, 669.
doi: 10.1016/j.cej.2015.07.020 |
[92] |
Raganati, F.; Gargiulo, V.; Ammendola, P.; Alfe, M.; Chirone, R. Chem. Eng. J. 2014, 239, 75.
doi: 10.1016/j.cej.2013.11.005 |
[93] |
Gu, Z.-G.; Heinke, L.; Wöll, C.; Neumann, T.; Wenzel, W.; Li, Q.; Fink, K.; Gordan, O. D.; Zahn, D. R. T. Appl. Phys. Lett. 2015, 107, 183301.
doi: 10.1063/1.4934737 |
[94] |
Anand, B.; Younis, S. A.; Szulejko, J. E.; Kim, K. H.; Zhang, W. J. Cleaner Prod. 2020, 275, 122359.
doi: 10.1016/j.jclepro.2020.122359 |
[95] |
Babal, A. S.; Tan, J. C. J. Mater. Chem. C 2020, 8, 12886.
doi: 10.1039/D0TC02637A |
[96] |
Lestari, W. W.; Irwinsyah; Saraswati, T. E.; Krisnandi, Y. K.; Arrozi, U. S. F.; Heraldy, E.; Kadja, G. T. M. Open Chem. 2019, 17, 1279.
doi: 10.1515/chem-2019-0136 |
[97] |
Zhang, Y.; Zhang, Y.; Wang, X.; Yu, J.; Din, B. ACS Appl. Mater. Interfaces 2018, 10, 34802.
doi: 10.1021/acsami.8b14197 |
[98] |
Riley, B. J.; Chong, S.; Kuang, W.; Varga, T.; Helal, A. S.; Galanek, M.; Li, J.; Nelson, Z. J.; Thallapally, P. K. ACS Appl. Mater. Interfaces 2020, 12, 45342.
doi: 10.1021/acsami.0c13717 |
[99] |
Ye, S.; Jiang, X.; Ruan, L.-W.; Liu, B.; Wang, Y.-M.; Zhu, J.-F.; Qiu, L.-G. Microporous Mesoporous Mater. 2013, 179, 191.
doi: 10.1016/j.micromeso.2013.06.007 |
[100] |
Alvarez, J. R.; Sanchez-Gonzalez, E.; Perez, E.; Schneider-Revueltas, E.; Martinez, A.; Tejeda-Cruz, A.; Islas-Jacome, A.; Gonzalez-Zamora, E.; Ibarra, I. A. Dalton Trans. 2017, 46, 9192.
doi: 10.1039/C7DT01845B |
[101] |
Di Credico, B.; Redaelli, M.; Bellardita, M.; Calamante, M.; Cepek, C.; Cobani, E.; D'Arienzo, M.; Evangelisti, C.; Marelli, M.; Moret, M.; Palmisano, L.; Scotti, R. Catalysts 2018, 8, 1.
doi: 10.3390/catal8010001 |
[102] |
Chuah, C. Y.; Goh, K.; Bae, T.-H. J. Phys. Chem. C 2017, 121, 6748.
doi: 10.1021/acs.jpcc.7b00291 |
[103] |
Xu, F.; Lv, D. F.; Xu, W. C.; Yang, X. X.; Sun, H. L.; Yuan, W. B.; Yan, J.; Chen, X. AIP Adv. 2020, 10, 125311.
doi: 10.1063/5.0033663 |
[104] |
Panella, B.; Hirscher, M.; Pütter, H.; Müller, U. Adv. Funct. Mater. 2006, 16, 520.
doi: 10.1002/(ISSN)1616-3028 |
[105] |
Vishnyakov, A.; Ravikovitch, P. I.; Neimark, A. V.; Bülow, M.; Wang, Q. M. Nano Lett. 2003, 3, 713.
doi: 10.1021/nl0341281 |
[106] |
Gu, Z.-G.; Fu, H.; Neumann, T.; Xu, Z.-X.; Fu, W.-Q.; Wenzel, W.; Zhang, L.; Zhang, J.; Wöll, C. ACS Nano 2015, 10, 977.
doi: 10.1021/acsnano.5b06230 |
[107] |
Sun, Y.; Yang, F.; Wei, Q.; Wang, N.; Qin, X.; Zhang, S.; Wang, B.; Nie, Z.; Ji, S.; Yan, H.; Li, J.-R. Adv. Mater. 2016, 28, 2374.
doi: 10.1002/adma.201505437 |
[108] |
Gu, Z.-G.; Li, D.-J.; Zheng, C.; Kang, Y.; Wöll, C.; Zhang, J. Angew. Chem., nt. Ed. 2017, 56, 6853.
|
[109] |
Delen, G.; Monai, M.; Meirer, F.; Weckhuysen, B. M. Angew. Chem., nt. Ed. 2021, 60, 1620.
|
[110] |
Lu, C.; Wang, G.; Wang, K.; Guo, D.; Bai, M.; Wang, Y. Materials 2018, 11, 1207.
doi: 10.3390/ma11071207 |
[111] |
Noh, S.-J.; Kwon, H. T.; Kim, J. J. Nanosci. Nanotechnol. 2013, 13, 5671.
|
[112] |
Guo, Y.; Mao, Y.; Hu, P.; Ying, Y.; Peng, X. ChemistrySelect 2016, 1, 108.
doi: 10.1002/slct.201500010 |
[113] |
Mao, Y.; Cao, W.; Li, J.; Sun, L.; Peng, X. Chem.-Eur. J. 2013, 19, 11883.
doi: 10.1002/chem.201301416 |
[114] |
Nan, J.; Dong, X.; Wang, W.; Jin, W.; Xu, N. Langmuir 2011, 27, 4309.
doi: 10.1021/la200103w |
[115] |
Guerrero, V. V.; Yoo, Y.; McCarthy, M. C.; Jeong, H.-K. J. Mater. Chem. 2010, 20, 3938.
doi: 10.1039/b924536g |
[116] |
Shah, M. N.; Gonzalez, M. A.; McCarthy, M. C.; Jeong, H.-K. Langmuir 2013, 29, 7896.
doi: 10.1021/la4014637 |
[117] |
Ranjan, R.; Tsapatsis, M. Chem. Mater. 2009, 21, 4920.
doi: 10.1021/cm902032y |
[118] |
Zhu, H.; Liu, H.; Zhitomirsky, I.; Zhu, S. Mater. Lett. 2015, 142, 19.
doi: 10.1016/j.matlet.2014.11.113 |
[119] |
Zhou, S.; Wei, Y.; Zhuang, L.; Ding, L.-X.; Wang, H. J. Mater. Chem. A 2017, 5, 1948.
doi: 10.1039/C6TA09469D |
[120] |
Guo, H.; Zhu, G.; Hewitt, I. J.; Qiu, S. J. Am. Chem. Soc. 2009, 131, 1646.
doi: 10.1021/ja8074874 |
[121] |
Kang, Z.; Wang, S.; Fan, L.; Zhang, M.; Kang, W.; Pang, J.; Du, X.; Guo, H.; Wang, R.; Sun, D. Commun. Chem. 2018, 1, 1.
doi: 10.1038/s42004-018-0011-5 |
[122] |
Dahanayaka, M.; Babicheva, R.; Chen, Z.; Law, A. W.-K.; Wu, M. S.; Zhou, K. Appl. Surf. Sci. 2020, 503, 144198.
doi: 10.1016/j.apsusc.2019.144198 |
[123] |
Zhou, S.; Zou, X.; Sun, F.; Zhang, F.; Fan, S.; Zhao, H.; Schiestel, T.; Zhu, G. J. Mater. Chem. 2012, 22, 10322.
doi: 10.1039/c2jm16371c |
[124] |
Mao, Y.; Li, J.; Cao, W.; Ying, Y.; Sun, L.; Peng, X. ACS Appl. Mater. Interfaces 2014, 6, 4473.
doi: 10.1021/am500233m |
[125] |
Li, W.; Meng, Q.; Zhang, C.; Zhang, G. Chem.-Eur. J. 2015, 21, 7224.
doi: 10.1002/chem.201500007 |
[126] |
Gascon, J.; Aguado, S.; Kapteijn, F. Microporous Mesoporous Mater. 2008, 113, 132.
doi: 10.1016/j.micromeso.2007.11.014 |
[127] |
Wu, Y.-N.; Li, F.; Liu, H.; Zhu, W.; Teng, M.; Jiang, Y.; Li, W.; Xu, D.; He, D.; Hannam, P.; Li, G. J. Mater. Chem. 2012, 22, 16971.
doi: 10.1039/c2jm32570e |
[128] |
Mao, Y.; Shi, L.; Huang, H.; Cao, W.; Li, J.; Sun, L.; Jin, X.; Peng, X. Chem. Commun. 2013, 49, 5666.
doi: 10.1039/c3cc42601g |
[129] |
Zhu, H.; Zhang, Q.; Zhu, S. ACS Appl. Mater. Interfaces 2016, 8, 17395.
doi: 10.1021/acsami.6b04505 |
[130] |
Campbell, J.; Szekely, G.; Davies, R. P.; Braddock, D. C.; Livingston, A. G. J. Mater. Chem. A 2014, 2, 9260.
doi: 10.1039/C4TA00628C |
[131] |
Fu, J.; Ben, T.; Qiu, S. Acta Phys.-Chim. Sin. 2020, 36, 1901079. (in Chinese)
doi: 10.3866/PKU.WHXB201901079 |
(付静茹, 贲腾, 裘式纶, 物理化学学报, 2020, 36, 1901079.)
|
|
[132] |
Campbell, J.; Burgal, J. D. S.; Szekely, G.; Davies, R. P.; Braddock, D. C.; Livingston, A. J. Membr. Sci. 2016, 503, 166.
doi: 10.1016/j.memsci.2016.01.024 |
[133] |
Zhou, S.; Wei, Y.; Zhuang, L.; Ding, L.-X.; Wang, H. J. Mater. Chem. A 2017, 5, 1948.
doi: 10.1039/C6TA09469D |
[134] |
Meng, C. F.; Chen, H. T.; Hu, P. F.; Yuan, A. H. ChemistrySelect 2020, 5, 15049.
doi: 10.1002/slct.v5.47 |
[135] |
Zhao, F.; Su, C. H.; Yang, W. X.; Han, Y.; Luo, X. L.; Li, C. H.; Tang, W. Z.; Yue, T. L.; Li, Z. H. Appl. Surf. Sci. 2020, 527, 146862.
doi: 10.1016/j.apsusc.2020.146862 |
[136] |
Yang, K.; Ban, Y. J.; Guo, A.; Zhao, M.; Zhou, Y. W.; Cao, N.; Yang, W. S. J. Membr. Sci. 2020, 611, 118419.
doi: 10.1016/j.memsci.2020.118419 |
[137] |
Chen, K.; Li, P.; Zhang, H. Y.; Sun, H. X.; Yang, X. J.; Yao, D. H.; Pang, X. J.; Han, X. L.; Niu, Q. J. Sep. Purif. Technol. 2020, 251, 117387.
doi: 10.1016/j.seppur.2020.117387 |
[138] |
Shi, Z. L.; Jiao, J. C.; Han, Q. X.; Xiao, Y.; Huang, L. K.; Li, M. X. Mol. Catal. 2020, 496, 111190.
|
[139] |
Sun, S.; Huang, L.; Xiao, H.; Shuai, Q.; Hu, S. Talanta 2019, 202, 145.
doi: 10.1016/j.talanta.2019.04.063 |
[140] |
Ben, T.; Lu, C.; Pei, C.; Xu, S.; Qiu, S. Chem.-Eur. J. 2012, 18, 10250.
doi: 10.1002/chem.201201574 |
[141] |
Nagaraju, D.; Bhagat, D. G.; Banerjee, R.; Kharul, U. K. J. Mater. Chem. A 2013, 1, 8828.
doi: 10.1039/c3ta10438a |
[142] |
Mao, Y.; Su, B.; Cao, W.; Li, J.; Ying, Y.; Ying, W.; Hou, Y.; Sun, L.; Peng, X. ACS Appl. Mater. Interfaces 2014, 6, 15676.
doi: 10.1021/am5049702 |
[143] |
Hou, J.; Sutrisna, P. D.; Wang, T.; Gao, S.; Li, Q.; Zhou, C.; Sun, S.; Yang, H. C.; Wei, F.; Ruggiero, M. T.; Zeitler, J. A.; Cheetham, A. K.; Liang, K.; Chen, V. ACS Appl. Mater. Interfaces 2019, 11, 5570.
doi: 10.1021/acsami.8b20570 |
[144] |
Venna, S. R.; Carreon, M. A. J. Am. Chem. Soc. 2010, 132, 76.
doi: 10.1021/ja909263x |
[145] |
Li, T.; Zhang, Z.; Han, Z. J. Inorg. Mater. 2021, 36, 592.
|
[146] |
Rangnekar, N.; Mittal, N.; Elyassi, B.; Caro, J.; Tsapatsis, M. Chem. Soc. Rev. 2015, 44, 7128.
doi: 10.1039/c5cs00292c pmid: 26155855 |
[147] |
Wu, X. K.; Yang, Y. W.; Lu, X. F.; Wang, Z. B. J. Membr. Sci. 2020, 613, 118518.
doi: 10.1016/j.memsci.2020.118518 |
[148] |
Yeo, Z. Y.; Chai, S.-P.; Zhu, P. W.; Mohamed, A. R. RSC Adv. 2014, 4, 54322.
doi: 10.1039/C4RA08884K |
[149] |
Liu, X.; Yue, T.; Qi, K.; Qiu, Y.; Xia, B. Y.; Guo, X. Chin. Chem. Lett. 2020, 31, 2189.
doi: 10.1016/j.cclet.2019.12.009 |
[150] |
Gu, Z.-G.; Bürck, J.; Bihlmeier, A.; Liu, J.; Shekhah, O.; Weidler, P. G.; Azucena, C.; Wang, Z.; Heissler, S.; Gliemann, H.; Klopper, W.; Ulrich, A. S.; Wöll, C. Chem.-Eur. J. 2014, 20, 9879.
doi: 10.1002/chem.201403524 |
[151] |
Gu, Z.-G.; Zhang, J. Coord. Chem. Rev. 2019, 378, 513.
doi: 10.1016/j.ccr.2017.09.028 |
[152] |
Zhuang, J.-L.; Terfort, A.; Woell, C. Coord. Chem. Rev. 2016, 307, 391.
doi: 10.1016/j.ccr.2015.09.013 |
[153] |
Gu, Z. G.; Chen, S. C.; Fu, W. Q.; Zheng, Q. D.; Zhang, J. ACS Appl. Mater. Interfaces 2017, 9, 7259.
doi: 10.1021/acsami.6b14541 |
[154] |
Heinke, L.; Woll, C. Adv. Mater. 2019, 31, 1806324.
doi: 10.1002/adma.v31.26 |
[155] |
Yamada, T.; Otsubo, K.; Makiura, R.; Kitagawa, H. Chem. Soc. Rev. 2013, 42, 6655.
doi: 10.1039/c3cs60028a |
[156] |
Gu, Z.-G.; Fu, W.-Q.; Wu, X.; Zhang, J. Chem. Commun. 2016, 52, 772.
doi: 10.1039/C5CC07614E |
[157] |
Ahlenhoff, K.; Koch, S.; Emmrich, D.; Dalpke, R.; Goelzhaeuser, A.; Swiderek, P. Phys. Chem. Chem. Phys. 2019, 21, 2351.
doi: 10.1039/c8cp07028h pmid: 30657503 |
[158] |
Begum, S.; Hassan, Z.; Braese, S.; Woell, C.; Tsotsalas, M. Acc. Chem. Res. 2019, 52, 1598.
doi: 10.1021/acs.accounts.9b00039 |
[159] |
Elrasheedy, A.; Nady, N.; Bassyouni, M.; El-Shazly, A. Membranes 2019, 9, 88.
doi: 10.3390/membranes9070088 |
[160] |
Li, W. Prog. Mater. Sci. 2019, 100, 21.
doi: 10.1016/j.pmatsci.2018.09.003 |
[161] |
Yuan, S.; Li, X.; Zhu, J.; Zhang, G.; Van Puyvelde, P.; Van der Bruggen, B. Chem. Soc. Rev. 2019, 48, 2665.
doi: 10.1039/C8CS00919H |
[162] |
Chen, D. H.; Sedykh, A. E.; Gomez, G. E.; Neumeier, B. L.; Santos, J. C. C.; Gvilava, V.; Maile, R.; Feldmann, C.; Woll, C.; Janiak, C.; Muller-Buschbaum, K.; Redel, E. Adv. Mater. Interfaces 2020, 7, 2000929.
doi: 10.1002/admi.v7.24 |
[163] |
Haldar, R.; Jakoby, M.; Kozlowska, M.; Khan, M. R.; Chen, H. Y.; Pramudya, Y.; Richards, B. S.; Heinke, L.; Wenzel, W.; Odobel, F.; Diring, S.; Howard, I. A.; Lemmer, U.; Woll, C. Chem.-Eur. J. 2020, 26, 17016.
doi: 10.1002/chem.v26.71 |
[164] |
Jiang, X.-T.; Yin, Q.; Liu, T.-F.; Cao, R. Chem. J. Chin. Univ. 2020, 41, 1691.
|
[165] |
Sen, B.; Santos, J. C. C.; Haldar, R.; Zhang, Q.; Hashem, T.; Qin, P.; Li, Y.; Kirschhofer, F.; Brenner-Weiss, G.; Gliemann, H.; Heinke, L.; Barner-Kowollik, C.; Knebel, A.; Woll, C. Nanoscale 2020, 12, 24419.
doi: 10.1039/D0NR06848A |
[166] |
Wang, S.; Pomerantz, N. L.; Dai, Z.; Xie, W.; Anderson, E. E.; Miller, T.; Khan, S. A.; Parsons, G. N. Mater. Today Adv. 2020, 8, 100085.
|
[167] |
Zhao, R.; Liao, H.; Wu, X. R.; Cao, X. L. J. Solid State Chem. 2020, 292, 121693.
doi: 10.1016/j.jssc.2020.121693 |
[168] |
Zhu, K.; Fan, R. Q.; Wu, J. K.; Wang, B. W.; Lu, H. Y.; Zheng, X. B.; Sun, T. C.; Gai, S.; Zhou, X. S.; Yang, Y. L. ACS Appl. Mater. Interfaces 2020, 12, 58239.
doi: 10.1021/acsami.0c17875 |
[169] |
Haldar, R.; Woell, C. Nano Res. 2021, 14, 355.
doi: 10.1007/s12274-020-2953-z |
[170] |
Jiang, T.; Sun, X. X.; Wei, L. L.; Li, M. G. Anal. Bioanal. Chem. 2021, 413, 565.
doi: 10.1007/s00216-020-03028-2 pmid: 33145645 |
[171] |
Hurrle, S.; Friebe, S.; Wohlgemuth, J.; Woell, C.; Caro, J.; Heinke, L. Chem.-Eur. J. 2017, 23, 2294.
doi: 10.1002/chem.201606056 |
[172] |
Han, S.; Ciufo, R. A.; Meyerson, M. L.; Keitz, B. K.; Mullins, C. B. J. Mater. Chem. A 2019, 7, 19396.
doi: 10.1039/C9TA05179A |
[173] |
Usman, M.; Ali, M.; Al-Maythalony, B. A.; Ghanem, A. S.; Saadi, O. W.; Ali, M.; Mazumder, M. A. J.; Abdel-Azeim, S.; Habib, M. A.; Yamani, Z. H.; Ensinger, W. ACS Appl. Mater. Interfaces 2020, 12, 49992.
doi: 10.1021/acsami.0c13715 |
[174] |
Chung, T.-S.; Jiang, L. Y.; Li, Y.; Kulprathipanja, S. Prog. Polym. Sci. 2007, 32, 483.
doi: 10.1016/j.progpolymsci.2007.01.008 |
[175] |
Jeazet, H. B. T.; Staudt, C.; Janiak, C. Dalton Trans. 2012, 41, 14003.
doi: 10.1039/c2dt31550e |
[176] |
Quan, K.; Pan, F.; Chen, Z.; Duan, C.; Yuan, B.; Yan, S. Inorg. Chem. Ind. 2021, 53, 1.
|
[177] |
Muthukumaraswamy Rangaraj, V.; Wahab, M. A.; Reddy, K. S. K.; Kakosimos, G.; Abdalla, O.; Favvas, E. P.; Reinalda, D.; Geuzebroek, F.; Abdala, A.; Karanikolos, G. N. Front Chem. 2020, 8, 1.
doi: 10.3389/fchem.2020.00001 |
[178] |
Wang, Y. J.; Yang, G.; Guo, H. L.; Meng, X. L.; Kong, G. D.; Kang, Z. X.; Guillet-Nicolas, R.; Mintova, S. J. Membr. Sci. 2022, 643, 11.
|
[179] |
Zornoza, B.; Seoane, B.; Zamaro, J. M.; Tellez, C.; Coronas, J. ChemPhySchem 2011, 12, 2781.
doi: 10.1002/cphc.v12.15 |
[180] |
Chi, W. S.; Sundell, B. J.; Zhang, K.; Harrigan, D. J.; Hayden, S. C.; Smith, Z. P. ChemSusChem 2019, 12, 2355.
|
[181] |
Kathuria, A.; Abiad, M. G.; Auras, R. Polym. Int. 2013, 62, 1144.
doi: 10.1002/pi.2013.62.issue-8 |
[182] |
Nuhnen, A.; Klopotowski, M.; Jeazet, H. B. T.; Sorribas, S.; Zornoza, B.; Tellez, C.; Coronas, J.; Janiak, C. Dalton Trans. 2020, 49, 1822.
doi: 10.1039/C9DT03222C |
[183] |
Basu, S.; Cano-Odena, A.; Vankelecom, I. F. J. J. Membr. Sci. 2010, 362, 478.
doi: 10.1016/j.memsci.2010.07.005 |
[184] |
Duan, C.; Jie, X.; Zhu, H.; Liu, D.; Peng, W.; Cao, Y. J. Appl. Polym. Sci. 2018, 135, 45728.
doi: 10.1002/app.45728 |
[185] |
Chuah, C. Y.; Li, W.; Samarasinghe, S. A. S. C.; Sethunga, G. S. M. D. P.; Bae, T.-H. Microporous Mesoporous Mater. 2019, 290, 109680.
doi: 10.1016/j.micromeso.2019.109680 |
[186] |
Chuah, C. Y.; Samarasinghe, S. A. S. C.; Li, W.; Goh, K.; Bae, T.-H. Membranes 2020, 10, 1.
doi: 10.3390/membranes10010001 |
[187] |
Akbari, A.; Karimi-Sabet, J.; Ghoreishi, S. M. Sep. Purif. Technol. 2020, 251, 117317.
doi: 10.1016/j.seppur.2020.117317 |
[188] |
Ockwig, N. W.; Nenoff, T. M. Chem. Rev. 2007, 107, 4078.
|
[189] |
Sanders, D. F.; Smith, Z. P.; Guo, R.; Robeson, L. M.; McGrath, J. E.; Paul, D. R.; Freeman, B. D. Polymer 2013, 54, 4729.
doi: 10.1016/j.polymer.2013.05.075 |
[190] |
Qian, Q.; Asinger, P. A.; Lee, M. J.; Han, G.; Mizrahi Rodriguez, K.; Lin, S.; Benedetti, F. M.; Wu, A. X.; Chi, W. S.; Smith, Z. P. Chem. Rev. 2020, 120, 8161.
doi: 10.1021/acs.chemrev.0c00119 |
[191] |
Yu, C.-H.; Huang, C.-H.; Tan, C.-S. Aerosol Air Qual. Res. 2012, 12, 745.
doi: 10.4209/aaqr.2012.05.0132 |
[192] |
Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. RSC Adv. 2013, 3, 14233.
doi: 10.1039/c3ra22733b |
[193] |
Shimekit, B.; Mukhtar, H. Advances in Natural Gas Technology, Chapter 9, Ed.: Hamid, A., IntechOpen, Malaysia, 2012, p. 235.
|
[194] |
Xu, H.; Tong, M.-M.; Wu, D.; Xiao, G.; Yang, Q.-Y.; Liu, D.-H.; Zhong, C.-L. Acta Phys.-Chim. Sin. 2015, 31, 41. (in Chinese)
doi: 10.3866/PKU.WHXB201411132 |
(许红, 童敏曼, 吴栋, 肖刚, 阳庆元, 刘大欢, 仲崇立, 物理化学学报, 2015, 31, 41.)
|
|
[195] |
Galizia, M.; Chi, W. S.; Smith, Z. P.; Merkel, T. C.; Baker, R. W.; Freeman, B. D. Macromolecules 2017, 50, 7809.
doi: 10.1021/acs.macromol.7b01718 |
[196] |
Olajire, A. A. Energy 2010, 35, 2610.
doi: 10.1016/j.energy.2010.02.030 |
[197] |
Yu, J.; Xie, L. H.; Li, J. R.; Ma, Y.; Seminario, J. M.; Balbuena, P. B. Chem. Rev. 2017, 117, 9674.
doi: 10.1021/acs.chemrev.6b00626 |
[198] |
Mao, Y.; Cao, W.; Li, J.; Liu, Y.; Ying, Y.; Sun, L.; Peng, X. J. Mater. Chem. A 2013, 1, 11711.
doi: 10.1039/c3ta12402a |
[199] |
Furukawa, H.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 8875.
doi: 10.1021/ja9015765 |
[200] |
The Stern Review on the Economic Effects of Climate Change, Popul. Dev. Rev. 2006, 32, 793.
doi: 10.1111/padr.2006.32.issue-4 |
[201] |
Metz, B.; Davidson, O.; de Coninck, H.; Loos, M.; Meyer, L. In Carbon Dioxide Capture and Storage, The Intergovernmental Panel on Climate Change, Eds.: Bert, M.; Ogunlade, D.; Heleen de C.; Manuela, L.; Leo, M., Cambridge University Press, Cambridge, 2005, pp. 105-171.
|
[202] |
Casado-Coterillo, C.; Fernandez-Barquin, A.; Zornoza, B.; Tellez, C.; Coronas, J.; Irabien, A. RSC Adv. 2015, 5, 102350.
doi: 10.1039/C5RA19331A |
[203] |
Casado-Coterillo, C.; Fernandez-Barquin, A.; Irabien, A. Membranes 2020, 10, 10010006.
|
[204] |
Wade, C. R.; Dinca, M. Dalton Trans. 2012, 41, 7931.
doi: 10.1039/c2dt30372h |
[205] |
Ge, L.; Wang, L.; Rudolph, V.; Zhu, Z. RSC Adv. 2013, 3, 25360.
doi: 10.1039/c3ra44250k |
[206] |
Hu, J.; Liu, J.; Liu, Y.; Yang, X. J. Phys. Chem. C 2016, 120, 10311.
doi: 10.1021/acs.jpcc.6b01119 |
[207] |
Cao, Y.; Zhao, Y.; Song, F.; Zhong, Q. J. Energy Chem. 2014, 23, 468.
doi: 10.1016/S2095-4956(14)60173-X |
[208] |
Mao, Y.; Chen, D.; Hu, P.; Guo, Y.; Ying, Y.; Ying, W.; Peng, X. Chem.-Eur. J. 2015, 21, 15127.
doi: 10.1002/chem.v21.43 |
[209] |
Chen, Z.; Liu, J.; Cui, H.; Zhang, L.; Su, C. Acta Chim. Sinica 2019, 77, 242. (in Chinese)
doi: 10.6023/A18100440 |
(陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.)
doi: 10.6023/A18100440 |
|
[210] |
Gong, J.-H.; Wang, C.-H.; Bian, Z.-J.; Yang, L.; Hu, J.; Liu, H.-L. Acta Phys-Chim. Sin. 2015, 31, 1963. (in Chinese)
doi: 10.3866/PKU.WHXB201508282 |
龚金华, 王臣辉, 卞子君, 阳立, 胡军, 刘洪来, 物理化学学报, 2015, 31, 1963.)
|
|
[211] |
Cao, F.; Zhang, C.; Xiao, Y.; Huang, H.; Zhang, W.; Liu, D.; Zhong, C.; Yang, Q.; Yang, Z.; Lu, X. Ind. Eng. Chem. Res. 2012, 51, 11274.
doi: 10.1021/ie301445p |
[212] |
Kaplan, K. H. Phys. Today 2007, 60, 31.
|
[213] |
Schrier, J. J. Phys. Chem. Lett. 2010, 1, 2284.
|
[214] |
Ghezzar, M. R.; Ognier, S.; Cavadias, S.; Abdelmalek, F.; Addou, A. Sep. Purif. Technol. 2013, 104, 250.
doi: 10.1016/j.seppur.2012.11.026 |
[215] |
Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.; Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R. A.; Wöll, C. J. Am. Chem. Soc. 2007, 129, 15118.
pmid: 18020338 |
[216] |
Li, D.-J.; Gu, Z.-G.; Zhang, J. Chem. Sci. 2020, 11, 1935.
doi: 10.1039/C9SC05881H |
[217] |
Arslan, H. K.; Shekhah, O.; Wohlgemuth, J.; Franzreb, M.; Fischer, R. A.; Wöll, C. Adv. Funct. Mater. 2011, 21, 4228.
doi: 10.1002/adfm.201101592 |
[218] |
Vozar, S.; Poh, Y.-C.; Serbowicz, T.; Bachner, M.; Podsiadlo, P.; Qin, M.; Verploegen, E.; Kotov, N.; Hart, A. J. Rev. Sci. Instrum. 2009, 80, 023903.
doi: 10.1063/1.3078009 |
[219] |
Baac, H. W.; Ok, J. G.; Maxwell, A.; Lee, K.-T.; Chen, Y.-C.; Hart, A. J.; Xu, Z.; Yoon, E.; Guo, L. J. Sci. Rep. 2012, 2, 989.
doi: 10.1038/srep00989 |
[220] |
Arslan, H. K.; Shekhah, O.; Wieland, D. C. F.; Paulus, M.; Sternemann, C.; Schroer, M. A.; Tiemeyer, S.; Tolan, M.; Fischer, R. A.; Wöll, C. J. Am. Chem. Soc. 2011, 133, 8158.
doi: 10.1021/ja2037996 pmid: 21534604 |
[221] |
Li, W.; Zhang, Y.; Zhang, C.; Meng, Q.; Xu, Z.; Su, P.; Li, Q.; Shen, C.; Fan, Z.; Qin, L.; Zhang, G. Nat. Commun. 2016, 7, 11315.
doi: 10.1038/ncomms11315 |
[1] | Yang Liu, Fengqin Gao, Zhanying Ma, Yinli Zhang, Wuwu Li, Lei Hou, Xiaojuan Zhang, Yaoyu Wang. Co-based Metal-organic Framework for High-efficiency Degradation of Methylene Blue in Water by Peroxymonosulfate Activation [J]. Acta Chimica Sinica, 2024, 82(2): 152-159. |
[2] | Bo Sun, Wenwen Ju, Tao Wang, Xiaojun Sun, Ting Zhao, Xiaomei Lu, Feng Lu, Quli Fan. Preparation of Highly-dispersed Conjugated Polymer-Metal Organic Framework Nanocubes for Antitumor Application [J]. Acta Chimica Sinica, 2023, 81(7): 757-762. |
[3] | Fengbin Zheng, Kun Wang, Tian Lin, Yinglong Wang, Guodong Li, Zhiyong Tang. Research Progress on the Preparation of Metal-Organic Frameworks Encapsulated Metal Nanoparticle Composites and Their Catalytic Applications★ [J]. Acta Chimica Sinica, 2023, 81(6): 669-680. |
[4] | Kaiqing Wang, Shuo Yuan, Wangdong Xu, Dan Huo, Qiulin Yang, Qingxi Hou, Dehai Yu. Preparation and Adsorption Properties of ZIF-8@B-CNF Composite Aerogel [J]. Acta Chimica Sinica, 2023, 81(6): 604-612. |
[5] | Zheng Yin, Yingbo Zhao, Minghua Zeng. Challenge, Advance and Emerging Opportunities for Metal-Organic Framework Glasses: from Dynamic Chemistry to Material Science and Noncrystalline Physics [J]. Acta Chimica Sinica, 2023, 81(3): 246-252. |
[6] | Junchang Chen, Mingxing Zhang, Shuao Wang. Research Progress of Synthesis Methods for Crystalline Porous Materials [J]. Acta Chimica Sinica, 2023, 81(2): 146-157. |
[7] | Xiaojuan Li, Ziyu Ye, Shuhan Xie, Yongjing Wang, Yonghao Wang, Yuancai Lv, Chunxiang Lin. Study on Performance and Mechanism of Phenol Degradation through Peroxymonosulfate Activation by Nitrogen/Chlorine Co-doped Porous Carbon Materials [J]. Acta Chimica Sinica, 2022, 80(9): 1238-1249. |
[8] | Min Cheng, Shihui Wang, Lei Luo, Li Zhou, Kexin Bi, Yiyang Dai, Xu Ji. Large-Scale Computational Screening of Metal-Organic Framework Membranes for Ethane/Ethylene Separation [J]. Acta Chimica Sinica, 2022, 80(9): 1277-1288. |
[9] | Xu Yan, Hemi Qu, Ye Chang, Xuexin Duan. Application of Metal-Organic Frameworks in Gas Pre-concentration, Pre-separation and Detection [J]. Acta Chimica Sinica, 2022, 80(8): 1183-1202. |
[10] | Shaobing Yan, Long Jiao, Chuanxin He, Hailong Jiang. Pyrolysis of ZIF-67/Graphene Composite to Co Nanoparticles Confined in N-Doped Carbon for Efficient Electrocatalytic Oxygen Reduction [J]. Acta Chimica Sinica, 2022, 80(8): 1084-1090. |
[11] | Linan Cao, Min Wei. Recent Progress of Electric Conductive Metal-Organic Frameworks Thin Film [J]. Acta Chimica Sinica, 2022, 80(7): 1042-1056. |
[12] | Chenfan Xie, Yu-Ping Xu, Ming-Liang Gao, Zhong-Ning Xu, Hai-Long Jiang. MOF-Stabilized Pd Single Sites for CO Esterification to Dimethyl Carbonate [J]. Acta Chimica Sinica, 2022, 80(7): 867-873. |
[13] | Ben Niu, Zhenyu Zhai, Xiaoke Hao, Tingli Ren, Congju Li. Flexible Acetone Gas Sensor based on ZIF-8/Polyacrylonitrile (PAN) Composite Film [J]. Acta Chimica Sinica, 2022, 80(7): 946-955. |
[14] | Fang Liu, Tingting Pan, Xiurong Ren, Weiren Bao, Jiancheng Wang, Jiangliang Hu. Research on Preparation and Benzene Adsorption Performance of HCDs@MIL-100(Fe) Adsorbents [J]. Acta Chimica Sinica, 2022, 80(7): 879-887. |
[15] | Shihui Wang, Xiaoyu Xue, Min Cheng, Shaochen Chen, Chong Liu, Li Zhou, Kexin Bi, Xu Ji. High-Throughput Computational Screening of Metal-Organic Frameworks for CH4/H2 Separation by Synergizing Machine Learning and Molecular Simulation [J]. Acta Chimica Sinica, 2022, 80(5): 614-624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||