Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (1): 100-110.DOI: 10.6023/A22100420 Previous Articles
Review
投稿日期:
2022-10-10
发布日期:
2022-11-02
作者简介:
张红丹, 博士, 沈阳师范大学化学化工学院讲师, 硕士研究生导师, 主持国家自然科学基金青年项目1项, 省部级项目2项. 主要从事微纳米材料的设计合成及光催化性能研究和多级孔沸石分子筛的制备及C4烃裂解性能的研究. |
兰欣雨, 沈阳师范大学化学化工学院2020级本科生. 主要从事超大孔沸石分子筛的探索合成. |
程鹏, 博士, 沈阳师范大学化学化工学院副教授, 硕士研究生导师, 主持在研及完成国家自然科学基金2项, 省自然基金1项, 省教育厅重点项目1项. 入选辽宁省“兴辽英才计划”青年拔尖人才, 辽宁省高等学校创新人才支持计划, 沈阳市科技创新人才支持计划. 主要从事沸石分子筛的绿色合成及低碳烷烃裂解性能的研究. |
基金资助:
Hongdan Zhang, Xinyu Lan, Peng Cheng()
Received:
2022-10-10
Published:
2022-11-02
Contact:
*E-mail: Supported by:
Share
Hongdan Zhang, Xinyu Lan, Peng Cheng. Advances in Hydroxyl Free Radical Assisted Synthesis of Zeolite[J]. Acta Chimica Sinica, 2023, 81(1): 100-110.
产生方法 | 优势 | 局限性 |
---|---|---|
紫外辐射 γ射线辐射 高能电子束辐射 可见光辐射 | 强度易于控制 | 制备装置要求高; 对人体有不可逆转的伤害 |
等离子体 超声波辐射 | 操作简便, 强度可控 | •OH产生量不可控 |
Fenton试剂 过硫酸盐 (NH4)2Ce(NO3)6 | 通过控制化学试剂的加入量进而控制•OH的量(半定量) | 引入杂原子, 对分子筛的制备有一定影响 |
H2O2分解 | 方法简单, 无杂原子干扰 | 分解过程受外界条件影响较大 |
自由基化的晶种 | 无外来条件的干扰, 制备过程更纯净 | 因分子筛结构及组成众多, 自由基化的特定条件(球磨、煅烧等)不具有普适性 |
产生方法 | 优势 | 局限性 |
---|---|---|
紫外辐射 γ射线辐射 高能电子束辐射 可见光辐射 | 强度易于控制 | 制备装置要求高; 对人体有不可逆转的伤害 |
等离子体 超声波辐射 | 操作简便, 强度可控 | •OH产生量不可控 |
Fenton试剂 过硫酸盐 (NH4)2Ce(NO3)6 | 通过控制化学试剂的加入量进而控制•OH的量(半定量) | 引入杂原子, 对分子筛的制备有一定影响 |
H2O2分解 | 方法简单, 无杂原子干扰 | 分解过程受外界条件影响较大 |
自由基化的晶种 | 无外来条件的干扰, 制备过程更纯净 | 因分子筛结构及组成众多, 自由基化的特定条件(球磨、煅烧等)不具有普适性 |
[1] |
(a) Li, Y.; Yu, J. Nat. Rev. Mater. 2021, 6, 1156.
doi: 10.1038/s41578-021-00347-3 |
(b) Xu, H.; Wu, P. Natl. Sci. Rev. 2022, 9, nwac045.
doi: 10.1093/nsr/nwac045 |
|
(c) Deneyer, A.; Ke, Q.; Devos, J.; Dusselier, M. Chem. Mater. 2020, 32, 4884.
doi: 10.1021/acs.chemmater.9b04741 |
|
(d) Cundy, C. S.; Cox, P. A. Chem. Rev. 2003, 103, 663.
doi: 10.1021/cr020060i |
|
(e) Hu, C.; Yan, W.; Xu, R. Acta Chim. Sinica 2017, 75, 679. (in Chinese)
doi: 10.6023/A17040169 |
|
( 胡成玉, 闫文付, 徐如人, 化学学报, 2017, 75, 679.)
doi: 10.6023/A17040169 |
|
[2] |
Li, Y.; Li, L.; Yu, J. Chem 2017, 3, 928.
doi: 10.1016/j.chempr.2017.10.009 |
[3] |
(a) Liu, Z.; Zhu, J.; Wakihara, T.; Okubo, T. Inorg. Chem. Front. 2019, 6, 14.
doi: 10.1039/C8QI00939B |
(b) Zhang, M. T.; Yan, T. T.; Dai, W. L.; Guan, N. J.; Li, L. D. Acta Chim. Sinica 2020, 78, 1404. (in Chinese)
doi: 10.6023/A20080346 |
|
( 张梦婷, 颜婷婷, 戴卫理, 关乃佳, 李兰冬, 化学学报, 2020, 78, 1404.)
doi: 10.6023/A20080346 |
|
(c) He, L.; Yao, Q. X.; Sun, M.; Ma, X. X. Acta Chim. Sinica 2022, 80, 180. (in Chinese)
doi: 10.6023/A21100489 |
|
( 何磊, 么秋香, 孙鸣, 马晓迅, 化学学报, 2022, 80, 180.)
doi: 10.6023/A21100489 |
|
[4] |
(a) Dapsens, P. Y.; Mondelli, C.; Pérez-Ramírez, J. Chem. Soc. Rev. 2015, 44, 7025.
doi: 10.1039/c5cs00028a pmid: 26691750 |
(b) Ennaert, T.; Van Aelst, J.; Dijkmans, J.; De Clercq, R.; Schutyser, W.; Dusselier, M.; Verboekend, D.; Sels, B. F. Chem. Soc. Rev. 2016, 45, 584.
doi: 10.1039/c5cs00859j pmid: 26691750 |
|
[5] |
(a) Sun, Q.; Wang, N.; Bing, Q.; Si, R.; Liu, J.; Bai, R.; Zhang, P.; Jia, M.; Yu, J. Chem 2017, 3, 477.
doi: 10.1016/j.chempr.2017.07.001 pmid: 28473586 |
(b) Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J. A. Science 2017, 356, 523.
doi: 10.1126/science.aam9035 pmid: 28473586 |
|
[6] |
Lefebvre, D.; Tezel, F. H. Renew. Sust. Energ. Rev. 2017, 67, 116.
doi: 10.1016/j.rser.2016.08.019 |
[7] |
(a) Gao, P.; Li, S.; Bu, X.; Dang, S.; Liu, Z.; Wang, H.; Zhong, L.; Qiu, M.; Yang, C.; Cai, J.; Wei, W.; Sun, Y. Nat. Chem. 2017, 9, 1019.
doi: 10.1038/nchem.2794 |
(b) Guo, P.; Shin, J.; Greenaway, A. G.; Min, J. G.; Su, J.; Choi, H. J.; Liu, L.; Cox, P. A.; Hong, S. B.; Wright, P. A.; Zou, X. Nature 2015, 524, 74.
doi: 10.1038/nature14575 |
|
[8] |
(a) Paolucci, C.; Khurana, I.; Parekh, A. A.; Li, S.; Shih, A. J.; Li, H.; Di Iorio, J. R.; Albarracin-Caballero, J. D.; Yezerets, A.; Miller, J. T.; Delgass, W. N.; Ribeiro, F. H.; Schneider, W. F.; Gounder, R. Science 2017, 357, 898.
doi: 10.1126/science.aan5630 |
(b) Chen, C.; Wu, Q.; Chen, F.; Zhang, L.; Pan, S.; Bian, C.; Zheng, X.; Meng, X.; Xiao, F. S. J. Mater. Chem. A 2015, 3, 5556.
doi: 10.1039/C4TA06407K |
|
[9] |
(a) Jamali, S. H.; Vlugt, T. J. H.; Lin, L.-C. J. Phys. Chem. C 2017, 121, 11273.
doi: 10.1021/acs.jpcc.7b00214 |
(b) Lee, H. Y.; Kim, H. S.; Jeong, H.-K.; Park, M.; Chung, D.-Y.; Lee, K.-Y.; Lee, E.-H.; Lim, W. T. J. Phys. Chem. C 2017, 121, 10594.
doi: 10.1021/acs.jpcc.7b02432 |
|
[10] |
Barrer, R. M. J. Chem. Soc. (Resumed) 1948, 2158.
|
[11] |
Meng, X.; Xiao, F. S. Chem. Rev. 2014, 114, 1521.
doi: 10.1021/cr4001513 |
[12] |
(a) Wheatley, P. S.; Allan, P. K.; Teat, S. J.; Ashbrook, S. E.; Morris, R. E. Chem. Sci. 2010, 1, 483.
doi: 10.1039/c0sc00178c |
(b) Liu, L.; Li, Y.; Wei, H.; Dong, M.; Wang, J.; Slawin, A. M.; Li, J.; Dong, J.; Morris, R. E. Angew. Chem. Int. Ed. 2009, 48, 2206.
doi: 10.1002/anie.200804891 |
|
[13] |
(a) Cai, R.; Liu, Y.; Gu, S.; Yan, Y. J. Am. Chem. Soc. 2010, 132, 12776.
doi: 10.1021/ja101649b |
(b) Xu, Y. P.; Tian, Z. J.; Wang, S. J.; Hu, Y.; Wang, L.; Wang, B. C.; Ma, Y. C.; Hou, L.; Yu, J. Y.; Lin, L. W. Angew. Chem. Int. Ed. 2006, 45, 3965.
doi: 10.1002/anie.200600054 |
|
[14] |
(a) Honda, K.; Yashiki, A.; Itakura, M.; Ide, Y.; Sadakane, M.; Sano, T. Microporous Mesoporous Mater. 2011, 142, 161.
doi: 10.1016/j.micromeso.2010.11.031 |
(b) Yashiki, A.; Honda, K.; Fujimoto, A.; Shibata, S.; Ide, Y.; Sadakane, M.; Sano, T. J. Cryst. Growth 2011, 325, 96.
doi: 10.1016/j.jcrysgro.2011.04.040 |
|
[15] |
Ren, L.; Wu, Q.; Yang, C.; Zhu, L.; Li, C.; Zhang, P.; Zhang, H.; Meng, X.; Xiao, F. S. J. Am. Chem. Soc. 2012, 134, 15173.
doi: 10.1021/ja3044954 |
[16] |
Lee, H.; Zones, S. I.; Davis, M. E. Nature 2003, 425, 385.
doi: 10.1038/nature01980 |
[17] |
(a) Ng, E. P.; Chateigner, D.; Bein, T.; Valtchev, V.; Mintova, S. Science 2012, 335, 70.
doi: 10.1126/science.1214798 |
(b) Kamimura, Y.; Itabashi, K.; Okubo, T. Microporous Mesoporous Mater. 2012, 147, 149.
doi: 10.1016/j.micromeso.2011.05.038 |
|
[18] |
Wang, J.; Zhang, Q.; Yan, W.; Yu, J. Chem. J. Chinese U. 2021, 42, 11.
|
[19] |
Feng, G.; Cheng, P.; Yan, W.; Boronat, M.; Li, X.; Su, J. H.; Wang, J.; Li, Y.; Corma, A.; Xu, R.; Yu, J. Science 2016, 351, 1188.
doi: 10.1126/science.aaf1559 |
[20] |
Shi, D.; Xu, L.; Chen, P.; Ma, T.; Lin, C.; Wang, X.; Xu, D.; Sun, J. Chem. Commun. 2019, 55, 1390.
doi: 10.1039/C8CC09225G |
[21] |
(a) Eliášová, P.; Opanasenko, M.; Wheatley, P. S.; Shamzhy, M.; Mazur, M.; Nachtigall, P.; Roth, W. J.; Morris, R. E.; Čejka, J. Chem. Soc. Rev. 2015, 44, 7177.
doi: 10.1039/c5cs00045a pmid: 25946705 |
(b) Roth, W. J.; Nachtigall, P.; Morris, R. E.; Wheatley, P. S.; Seymour, V. R.; Ashbrook, S. E.; Chlubná, P.; Grajciar, L.; Položij, M.; Zukal, A. Nat. Chem. 2013, 5, 628.
doi: 10.1038/nchem.1662 pmid: 25946705 |
|
(c) Xu, L.; Sun, J. Adv. Energy Mater. 2016, 6, 1600441.
doi: 10.1002/aenm.201600441 pmid: 25946705 |
|
[22] |
Feng, G.; Wang, J.; Boronat, M.; Li, Y.; Su, J. H.; Huang, J.; Ma, Y.; Yu, J. J. Am. Chem. Soc. 2018, 140, 4770.
doi: 10.1021/jacs.8b00093 |
[23] |
Yu, S.; Wu, S.; Liu, Y.; Li, L.; Ge, X. J. Taiwan Inst. Chem. E 2020, 109, 26.
doi: 10.1016/j.jtice.2020.02.020 |
[24] |
(a) Fan, W.; Duan, R. G.; Yokoi, T.; Wu, P.; Kubota, Y.; Tatsumi, T. J. Am. Chem. Soc. 2008, 130, 10150.
doi: 10.1021/ja7100399 |
(b) Zhang, T.; Chen, X.; Chen, G.; Chen, M.; Bai, R.; Jia, M.; Yu, J. J. Mater. Chem. A 2018, 6, 9473.
doi: 10.1039/C8TA01439F |
|
[25] |
Lin, D.; Zhang, Q.; Qin, Z.; Li, Q.; Feng, X.; Song, Z.; Cai, Z.; Liu, Y.; Chen, X.; Chen, D.; Mintova, S.; Yang, C. Angew. Chem. Int. Ed. 2021, 60, 3443.
doi: 10.1002/anie.202011821 |
[26] |
Li, Z.; Wang, Y.; Zhang, J.; Wang, D.; Ma, W. Catal. Commun. 2017, 90, 87.
doi: 10.1016/j.catcom.2016.12.002 |
[27] |
(a) Zhao, D.; Armutlulu, A.; Chen, Y.; Wang, Y.; Xie, R. J. Clean. Prod. 2021, 319, 128682.
doi: 10.1016/j.jclepro.2021.128682 |
(b) Chen, Y.; Armutlulu, A.; Jiang, X.; Lai, B.; Jiang, W.; Xie, R.; Crittenden, J. C. ACS Sustain. Chem. Eng. 2021, 9, 5085.
doi: 10.1021/acssuschemeng.0c09240 |
|
[28] |
Lutz, W. Adv. Mater. Sci. Eng. 2014, 2014, 724248.
|
[29] |
Davis, M. E.; Lobo, R. F. Chem. Mater. 1992, 4, 756.
doi: 10.1021/cm00022a005 |
[30] |
Oleksiak, M. D.; Muraoka, K.; Hsieh, M. F.; Conato, M. T.; Shimojima, A.; Okubo, T.; Chaikittisilp, W.; Rimer, J. D. Angew. Chem. Int. Ed. 2017, 56, 13366.
doi: 10.1002/anie.201702672 pmid: 28771911 |
[31] |
Ferdov, S.; Marques, J.; Tavares, C. J.; Lin, Z.; Mori, S.; Tsunoji, N. Microporous Mesoporous Mater. 2022, 336, 111858.
doi: 10.1016/j.micromeso.2022.111858 |
[32] |
Cheng, P.; Feng, G.; Sun, C.; Xu, W.; Su, J. H.; Yan, W.; Yu, J. Inorg. Chem. Front. 2018, 5, 2106.
doi: 10.1039/C8QI00441B |
[33] |
(a) Snook, M. E.; Hamilton, G. A. J. Am. Chem. Soc. 1974, 96, 860.
doi: 10.1021/ja00810a035 pmid: 15296324 |
(b) Beitz, T.; Bechmann, W.; Mitzner, R. J. Phys. Chem. A 1998, 102, 6760.
doi: 10.1021/jp980654i pmid: 15296324 |
|
(c) Anipsitakis, G. P.; Dionysiou, D. D. Environ. Sci. Technol. 2004, 38, 3705.
pmid: 15296324 |
|
[34] |
(a) Hayon, E.; Treinin, A.; Wilf, J. J. Am. Chem. Soc. 1972, 94, 47.
doi: 10.1021/ja00756a009 |
(b) Pennington, D. E.; Haim, A. J. Am. Chem. Soc. 1968, 90, 3700.
doi: 10.1021/ja01016a017 |
|
[35] |
Zhou, Y.; Shen, X.; Li, J. Inorg. Chem. Commun. 2019, 107, 107462.
doi: 10.1016/j.inoche.2019.107462 |
[36] |
Gallego, E. M.; Li, C.; Paris, C.; Martín, N.; Martínez‐Triguero, J.; Boronat, M.; Moliner, M.; Corma, A. Chem-Eur. J. 2018, 24, 14631.
doi: 10.1002/chem.201803637 pmid: 30070401 |
[37] |
Feng, C.; Su, X.; Wang, W.; Xu, S.; Fan, B.; Xin, Q.; Wu, W. Microporous Mesoporous Mater. 2021, 312, 110780.
doi: 10.1016/j.micromeso.2020.110780 |
[38] |
Zhao, X.; Niu, L.; Hao, Z.; Long, X.; Wang, D.; Li, G. React. Kinet. Mech. Cat. 2021, 134, 837.
doi: 10.1007/s11144-021-02105-6 |
[39] |
Kadja, G. T. M.; Azhari, N. J.; Mardiana, S.; Khalil, M.; Subagjo; Mahyuddin, M. H. Ind. Eng. Chem. Res. 2021, 60, 17786.
doi: 10.1021/acs.iecr.1c03586 |
[40] |
Miao, K.; Luo, X.; Wang, W.; Guo, S.; Cao, F.; Hu, Y.; Chang, P.; Feng, G. Microporous Mesoporous Mater. 2019, 289, 109640.
doi: 10.1016/j.micromeso.2019.109640 |
[41] |
(a) Brillas, E.; Sirés, I.; Oturan, M. A. Chem. Rev. 2009, 109, 6570.
doi: 10.1021/cr900136g pmid: 19839579 |
(b) Zhang, M.; Dong, H.; Zhao, L.; Wang, D.; Meng, D. Sci. Total Environ. 2019, 670, 110.
doi: 10.1016/j.scitotenv.2019.03.180 pmid: 19839579 |
|
[42] |
Guo, Q.; Li, G.; Liu, D.; Wei, Y. Solid State Sci. 2019, 91, 89.
doi: 10.1016/j.solidstatesciences.2019.03.016 |
[43] |
Han, Z.; Zhang, F.; Zhao, X. Microporous Mesoporous Mater. 2019, 290, 109679.
doi: 10.1016/j.micromeso.2019.109679 |
[44] |
Cheng, P.; Song, M.; Zhang, H.; Xuan, Y.; Wu, C. J. Mater. Sci. 2019, 54, 4573.
doi: 10.1007/s10853-018-3178-3 |
[45] |
(a) Watanabe, T.; Hasegawa, S.; Wakiyama, N.; Usui, F.; Kusai, A.; Isobe, T.; Senna, M. J. Solid State Chem. 2002, 164, 27.
doi: 10.1006/jssc.2001.9436 |
(b) Zeleňák, V.; Zeleňáková, A.; Kováč, J. Colloids Surf. Physicochem. Eng. Aspects 2010, 357, 97.
doi: 10.1016/j.colsurfa.2010.01.001 |
|
[46] |
(a) Watanabe, T.; Isobe, T.; Senna, M. J. Solid State Chem. 1996, 122, 291.
doi: 10.1006/jssc.1996.0115 |
(b) Tavazzi, S.; Ferraro, L.; Cozza, F.; Pastori, V.; Lecchi, M.; Farris, S.; Borghesi, A. ACS Appl. Mater. Interfaces 2014, 6, 19606.
doi: 10.1021/am503940p |
|
[47] |
Majano, G.; Delmotte, L.; Valtchev, V.; Mintova, S. Chem. Mater. 2009, 21, 4184.
doi: 10.1021/cm900462u |
[48] |
Zhang, H.; Wu, C.; Song, M.; Lu, T.; Wang, W.; Wang, Z.; Yan, W.; Cheng, P.; Zhao, Z. Microporous Mesoporous Mater. 2021, 310, 110633.
doi: 10.1016/j.micromeso.2020.110633 |
[49] |
Mihailova, B.; Valtchev, V.; Mintova, S.; Faust, A. C.; Petkov, N.; Bein, T. Phys. Chem. Chem. Phys. 2005, 7, 2756.
pmid: 16189590 |
[50] |
Lu, T.; Wang, Z.; Zhang, H.; Qin, J.; Yang, Y.; Cheng, P.; Zhao, Z. Microporous Mesoporous Mater. 2022, 341, 112071.
doi: 10.1016/j.micromeso.2022.112071 |
[51] |
Park, J.; Kim, B. C.; Park, S. S.; Park, H. C. J. Mater. Sci. Lett. 2001, 20, 531.
doi: 10.1023/A:1010976416414 |
[52] |
Ng, T. Y. S.; Chew, T. L.; Yeong, Y. F.; Jawad, Z. A.; Ho, C. D. Sci. Rep. 2019, 9, 15062.
doi: 10.1038/s41598-019-51460-x |
[53] |
Pal, P.; Das, J. K.; Das, N.; Bandyopadhyay, S. Ultrason. Sonochem. 2013, 20, 314.
doi: 10.1016/j.ultsonch.2012.07.012 |
[54] |
Han, J.; Ha, Y.; Guo, M.; Zhao, P.; Liu, Q.; Liu, C.; Song, C.; Ji, N.; Lu, X.; Ma, D.; Li, Z. Ultrason. Sonochem. 2019, 59, 104703.
doi: 10.1016/j.ultsonch.2019.104703 |
[55] |
Chen, C. T.; Iyoki, K.; Yonezawa, Y.; Okubo, T.; Wakihara, T. J. Phys. Chem. C 2020, 124, 11516.
doi: 10.1021/acs.jpcc.0c02578 |
[56] |
Dewes, R. M.; Mendoza, H. R.; Pereira, M. V. L.; Lutz, C.; Van Gerven, T. Ultrason. Sonochem. 2022, 82, 105909.
doi: 10.1016/j.ultsonch.2022.105909 |
[57] |
Huang, J.; Hu, J.; Du, W.; Liu, H.; Qian, F.; Wang, M. J. Mater. Chem. A 2017, 5, 18801.
doi: 10.1039/C7TA05649D |
[58] |
Chen, X.; Qiu, M.; Li, S.; Yang, C.; Shi, L.; Zhou, S.; Yu, G.; Ge, L.; Yu, X.; Liu, Z.; Sun, N.; Zhang, K.; Wang, H.; Wang, M.; Zhong, L.; Sun, Y. Angew. Chem. Int. Ed. 2020, 59, 11325.
doi: 10.1002/anie.202002886 |
[59] |
Wang, J.; Liu, P.; Boronat, M.; Ferri, P.; Xu, Z.; Liu, P.; Shen, B.; Wang, Z.; Yu, J. Angew. Chem. Int. Ed. 2020, 59, 17225.
doi: 10.1002/anie.202005715 |
[60] |
Chen, J.; Zhang, M.; Shu, J.; Yuan, M.; Yan, W.; Bai, P.; He, L.; Shen, N.; Gong, S.; Zhang, D.; Li, J.; Hu, J.; Li, R.; Wu, G.; Chai, Z.; Yu, J.; Wang, S. Angew. Chem. Int. Ed. 2021, 60, 14858.
doi: 10.1002/anie.202103766 |
[61] |
Lu, T.; Yan, W.; Feng, G.; Luo, X.; Hu, Y.; Guo, J.; Yu, Z.; Zhao, Z.; Ding, S. Green Chem. 2022, 24, 4778.
doi: 10.1039/D2GC00869F |
[62] |
Liu, Y.; Xue, X.; Wang, Y.; Ye, F.; Dai, J. G.; Chen, G. Green Chem. 2022, 24, 5792.
doi: 10.1039/D2GC00082B |
[63] |
De Smedt, C.; Someus, E.; Spanoghe, P. Pest Manage. Sci. 2015, 71, 1355.
doi: 10.1002/ps.3999 |
[64] |
(a) Anfray, C.; Dong, B.; Komaty, S.; Mintova, S.; Valable, S. ACS Appl. Mater. Interfaces 2017, 9, 13849.
doi: 10.1021/acsami.7b00265 pmid: 27270964 |
(b) Fenwick, O.; Coutiño- Gonzalez, E.; Grandjean, D.; Baekelant, W.; Richard, F.; Bonacchi, S.; De Vos, D.; Lievens, P.; Roeffaers, M.; Hofkens, J.; Samorì, P. Nat. Mater. 2016, 15, 1017.
doi: 10.1038/nmat4652 pmid: 27270964 |
[1] | Lingyue Yang, Yunting Li, Chao Shu. Research Progress on Sultine [J]. Acta Chimica Sinica, 2024, 82(2): 171-189. |
[2] | Yi Wan, Jianghua He, Yuetao Zhang. Research Progress in Precision Polymerization of Polar Olefin Monomers by Lewis Pairs★ [J]. Acta Chimica Sinica, 2023, 81(9): 1215-1230. |
[3] | Xupan Xu, Kai Fan, Shengze Zhao, Jian Li, Shan Gao, Zhongbiao Wu, Xiangju Meng, Feng-Shou Xiao. Enhanced Performance for Mesoporous Beta Zeolites Supported Pd in the Methane Catalytic Combustion★ [J]. Acta Chimica Sinica, 2023, 81(9): 1108-1112. |
[4] | Mei Hong, Jinqiang Gao, Tong Li, Shihe Yang. In-situ Etching Strategy for Manipulation of Hierarchical Zeolite and Its Application★ [J]. Acta Chimica Sinica, 2023, 81(8): 937-948. |
[5] | Shaoyan Gan, Shengyu Zhong, Liting Wang, Lei Shi. Synthesis and Application of Organic Hypervalent Bromine Reagents [J]. Acta Chimica Sinica, 2023, 81(8): 1030-1042. |
[6] | Wenshan Zheng, Guanbin Gao, Hao Deng, Taolei Sun. Room Temperature Synthesis and Near-infrared Fluorescence Performance Optimization of Ag2Se@Ag2S Core-shell Quantum Dots [J]. Acta Chimica Sinica, 2023, 81(7): 763-770. |
[7] | Yandong Zhang, Shoufei Zhu. Perspective for Phosphine Ligands with Cyclopropane Backbone★ [J]. Acta Chimica Sinica, 2023, 81(7): 777-783. |
[8] | Li Liu, Gang Zheng, Guoqiang Fan, Hongguang Du, Jiajing Tan. Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters [J]. Acta Chimica Sinica, 2023, 81(6): 657-668. |
[9] | Kanbinuer Nuermaimaiti, Chao Wang, Shiwei Luo, Abudu Rexit Abulikemu. Research on Selective Dehalogenation of α,α,α-Trihalogen (Chloro, Bromo) methyl Ketones Under Electrochemical Conditions [J]. Acta Chimica Sinica, 2023, 81(6): 582-587. |
[10] | Wang Jun, Xu Xiaomei, Zhou Jiaolong, Zhao Yanan, Sun Xiuli, Tang Yong, He Sufang, Yang Hongmei. Synthesis of New Sulfur-free and Phosphorus-free Ether-ester and Study on Its Properties As Ashless Friction Modifier [J]. Acta Chimica Sinica, 2023, 81(5): 461-468. |
[11] | Junchang Chen, Mingxing Zhang, Shuao Wang. Research Progress of Synthesis Methods for Crystalline Porous Materials [J]. Acta Chimica Sinica, 2023, 81(2): 146-157. |
[12] | Yang Gao, Xuexin Zhang, Jinsheng Yu, Jian Zhou. Recent Advances in Catalytic Enantioselective Synthesis of α-Chiral Tertiary Azides★ [J]. Acta Chimica Sinica, 2023, 81(11): 1590-1608. |
[13] | Xiaochen Wang, Zeyao Ji, Jian Liu, Bingfu Wang, Hui Jin, Lixin Zhang. Advances in Organocatalytic Asymmetric Reactions Involving Thioesters [J]. Acta Chimica Sinica, 2023, 81(1): 64-83. |
[14] | Zhiping Chen, Yongle Meng, Jing Lu, Wenwu Zhou, Zhiyuan Yang, Anning Zhou. Preparation of Fe@Si/S-34 Catalysts and Its Catalytic Performance for Syngas to Olefins [J]. Acta Chimica Sinica, 2023, 81(1): 14-19. |
[15] | Xia Liu, Chunxiang Kuang, Changhui Su. Transition-metal Catalyzed 1,2,3-Triazole-assisted C—H Functionalization Processes [J]. Acta Chimica Sinica, 2022, 80(8): 1135-1151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||