Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (7): 725-734.DOI: 10.6023/A23030090 Previous Articles Next Articles
Article
刘嘉文a,b,c, 林玮璜a,b,c, 王惟嘉c,d, 郭学益a,b,c,*(), 杨英a,b,c,*()
投稿日期:
2023-03-27
发布日期:
2023-05-23
基金资助:
Jiawen Liua,b,c, Weihuang Lina,b,c, Weijia Wangc,d, Xueyi Guoa,b,c(), Ying Yanga,b,c()
Received:
2023-03-27
Published:
2023-05-23
Contact:
*E-mail: Supported by:
Share
Jiawen Liu, Weihuang Lin, Weijia Wang, Xueyi Guo, Ying Yang. Synthesis and Photocatalytic Degradation of Cu1.94S-SnS Nano-heterojunction[J]. Acta Chimica Sinica, 2023, 81(7): 725-734.
材料 | 光源 | 辐照时间/min | 降解效率/% | 参考文献 | |
---|---|---|---|---|---|
Cu1.94S-SnS | 300 W氙灯(AM 1.5G) | 60 | 98 | 当前工作 | |
Cu掺杂ZnO/SnS | 150 W氙灯(AM 1.5G) | 120 | 97.2 | [ | |
ZTPG | 紫外光(60 W, 365 nm) | 90 | 98.1 | [ | |
Cu2-xS-DE复合物 | 500 W氙灯 | 40 | 99.1 | [ | |
Cu@CuS | 300 W氙灯 | 200 | 90.6 | [ | |
UiO-66/g-C3N4 | 350 W氙灯 | 240 | 100 | [ |
材料 | 光源 | 辐照时间/min | 降解效率/% | 参考文献 | |
---|---|---|---|---|---|
Cu1.94S-SnS | 300 W氙灯(AM 1.5G) | 60 | 98 | 当前工作 | |
Cu掺杂ZnO/SnS | 150 W氙灯(AM 1.5G) | 120 | 97.2 | [ | |
ZTPG | 紫外光(60 W, 365 nm) | 90 | 98.1 | [ | |
Cu2-xS-DE复合物 | 500 W氙灯 | 40 | 99.1 | [ | |
Cu@CuS | 300 W氙灯 | 200 | 90.6 | [ | |
UiO-66/g-C3N4 | 350 W氙灯 | 240 | 100 | [ |
[1] |
Li X. Y.; Pi Y. H.; Wu L. Q.; Xia Q. B.; Wu J. L.; Li Z.; Xiao J. Appl. Catal., B 2017, 202, 653.
doi: 10.1016/j.apcatb.2016.09.073 |
[2] |
He X. H.; Kai T. H.; Ding P. Environ. Chem. Lett. 2021, 19, 4563.
doi: 10.1007/s10311-021-01295-8 |
[3] |
Zhao S. G.; Chen F. Y.; Song Y. H.; Hua J.; Wu R.; Yang J. T.; Tang Y. B. J. Environ. Chem. Eng. 2023, 11,109262.
|
[4] |
Chava R. K.; Do J. Y.; Kang M. J. Mater. Chem. A 2019, 7, 13614.
doi: 10.1039/C9TA03059J |
[5] |
Kadam S. R.; Ghosh S.; Bar-Ziv R.; Bar-Sadan M. Chem.-Eur. J. 2020, 26, 6679.
doi: 10.1002/chem.v26.29 |
[6] |
Yao K. L.; Li J.; Shan S. Y.; Jia Q. M. Catal. Commun. 2017, 101, 51.
doi: 10.1016/j.catcom.2017.07.019 |
[7] |
Li Q. Y.; Wang F.; Sun L. Q.; Jiang Z.; Ye T. T.; Chen M.; Bai Q.; Wang C.; Han X. G. Nano-Micro Lett. 2017, 9, 3.
doi: 10.1007/s40820-016-0106-4 |
[8] |
Alikarami S.; Soltanizade A.; Rashchi F. J. Phys. Chem. Solids 2022, 171, 110993.
doi: 10.1016/j.jpcs.2022.110993 |
[9] |
Sun L. Q.; Zhao Z. C.; Li S.; Su Y. P.; Huang L.; Shao N. N.; Liu F.; Bu Y. B.; Zhang H. J.; Zhang Z. T. ACS Appl. Nano Mater. 2019, 2, 2144.
doi: 10.1021/acsanm.9b00122 |
[10] |
Yang H. Mater. Res. Bull. 2021, 142, 111406.
doi: 10.1016/j.materresbull.2021.111406 |
[11] |
Cho G.; Park Y.; Hong Y. K.; Ha D. H. Nano Convergence 2019, 6, 17.
doi: 10.1186/s40580-019-0187-0 |
[12] |
Li H. B.; Zanella M.; Genovese A.; Povia M.; Falqui A.; Giannini C.; Manna L. Nano Lett. 2011, 11, 4964.
doi: 10.1021/nl202927a |
[13] |
Jain P. K.; Amirav L.; Aloni S.; Alivisatos A. P. J. Am. Chem. Soc. 2010, 132, 9997.
doi: 10.1021/ja104126u |
[14] |
Chen L. H.; Kong Z. Z.; Tao H. C.; Hu H. F.; Gao J.; Li G. H. Nanoscale 2022, 14, 3907.
doi: 10.1039/D1NR08077F |
[15] |
Biacchi A. J.; Vaughn D. D.; Schaak R. E. J. Am. Chem. Soc. 2013, 135, 11634.
doi: 10.1021/ja405203e |
[16] |
Fathy M.; Elyamny S.; Bishara A. A.; Roston G. D.; Kashyout A. B. J. Mater. Sci.-Mater. El. 2020, 31, 18120.
doi: 10.1007/s10854-020-04362-y |
[17] |
Reddy N. K.; Devika M.; Gopal E. S. R. Crit. Rev. Solid State Mater. Sci. 2015, 40, 359.
doi: 10.1080/10408436.2015.1053601 |
[18] |
Yao K. L.; Liu Y.; Yang H.; Yuan J. Y.; Shan S. Y. Colloids Surf., A 2020, 603, 125240.
doi: 10.1016/j.colsurfa.2020.125240 |
[19] |
Liu Y.; Liu M. X.; Yin D. Q.; Qiao L.; Fu Z.; Swihart M. T. ACS Nano 2018, 12, 7803.
doi: 10.1021/acsnano.8b01871 |
[20] |
Rivest J. B.; Jain P. K. Chem. Soc. Rev. 2013, 42, 89.
doi: 10.1039/C2CS35241A |
[21] |
De Trizio L.; Li H. B.; Casu A.; Genovese A.; Sathya A.; Messina G. C.; Manna L. J. Am. Chem. Soc. 2014, 136, 16277.
doi: 10.1021/ja508161c |
[22] |
Volokh M.; Mokari T. Nanoscale Adv. 2020, 2, 930.
doi: 10.1039/C9NA00729F |
[23] |
Li Z. Z.; Saruyama M.; Asaka T.; Tatetsu Y.; Teranishi T. Science 2021, 373, 332.
doi: 10.1126/science.abh2741 |
[24] |
Lesnyak V.; Brescia R.; Messina G. C.; Manna L. J. Am. Chem. Soc. 2015, 137, 9315.
doi: 10.1021/jacs.5b03868 |
[25] |
Chen Y. G.; Zhao S.; Wang X.; Peng Q.; Lin R.; Wang Y.; Shen R. A.; Cao X.; Zhang L. B.; Zhou G.; Li J.; Xia A. D.; Li Y. D. J. Am. Chem. Soc. 2016, 138, 4286.
doi: 10.1021/jacs.5b12666 |
[26] |
Guo X. Y.; Liu S.; Wang W. J.; Li C. Y.; Yang Y.; Tian Q. H.; Liu Y. Nanoscale Adv. 2021, 3, 3481.
doi: 10.1039/D1NA00037C |
[27] |
Chen D.; Shen G. Z.; Tang K. B.; Lei S. J.; Zheng H. G.; Qian Y. T. J. Cryst. Growth 2004, 260, 469.
doi: 10.1016/j.jcrysgro.2003.09.009 |
[28] |
Shown I.; Samireddi S.; Chang Y. C.; Putikam R.; Chang P. H.; Sabbah A.; Fu F. Y.; Chen W. F.; Wu C. I.; Yu T. Y.; Chung P. W.; Lin M. C.; Chen L. C.; Chen K. H. Nat. Commun. 2018, 9, 169.
doi: 10.1038/s41467-017-02547-4 |
[29] |
Feng C. H.; Meng X. P.; Song X. L.; Feng X. T.; Zhao Y.; Liu G. RSC Adv. 2016, 6, 110266.
doi: 10.1039/C6RA20306J |
[30] |
Lei W. S.; Wang F. Z.; Lu B.; Ye Z. Z.; Pan X. H. New J. Chem. 2022, 46, 17791.
doi: 10.1039/D2NJ03520K |
[31] |
Liu S.; Guo X. Y.; Wang W. J.; Yang Y.; Zhu C. T.; Li C. Y.; Lin W. H.; Tian Q. H.; Liu Y. Appl. Catal., B 2022, 303, 120909.
doi: 10.1016/j.apcatb.2021.120909 |
[32] |
Zhu D. X.; Tang A. W.; Peng L.; Liu Z. Y.; Yang C. H.; Teng F. J. Mater. Chem. C 2016, 4, 4880.
doi: 10.1039/C6TC00980H |
[33] |
Chen L. H.; Hu H. F.; Chen Y. Z.; Li Y.; Gao J.; Li G. H. Chem-Eur. J. 2021, 27, 1057.
doi: 10.1002/chem.v27.3 |
[34] |
Landi S.; Segundo I. R.; Freitas E.; Vasilevskiy M.; Carneiro J.; Tavares C. J. Solid State Commun. 2022, 341, 114573.
doi: 10.1016/j.ssc.2021.114573 |
[35] |
Ma Z.-Y.; Ye L.; Wu Y.-H.; Zhao T. Acta Chim. Sinica 2021, 79, 1173. (in Chinese)
doi: 10.6023/A21050242 |
(马智烨, 叶丽, 吴雨桓, 赵彤, 化学学报, 2021, 79, 1173.)
|
|
[36] |
Tanveer M.; Cao C. B.; Aslam I.; Ali Z.; Idrees F.; Tahir M.; Khan W. S.; Butt F. K.; Mahmood A. Rsc. Adv. 2014, 4, 63447.
doi: 10.1039/C4RA04940C |
[37] |
Ye L. Q.; Liu J. Y.; Gong C. Q.; Tian L. H.; Peng T. Y.; Zan L. ACS Catal. 2012, 2, 1677.
doi: 10.1021/cs300213m |
[38] |
Ralph G. P. Inorg. Chem. 1988, 27, 734.
doi: 10.1021/ic00277a030 |
[39] |
Zhang X. Y.; Zhou J. F.; Yang D. P.; Chen S. Y.; Huang J. L.; Li Z. B. Catal. Today 2019, 335, 228.
doi: 10.1016/j.cattod.2018.11.047 |
[40] |
Hosseinpour Z.; Hosseinpour S.; Maaza M.; Scarpellini A. RSC Adv. 2016, 6, 42581.
doi: 10.1039/C6RA03647C |
[41] |
Ilanchezhiyan P.; Kumar G. M.; Siva C.; Venkatasubbu G. D.; Kang T. W.; Kim D. Y. Appl. Surf. Sci. 2019, 489, 943.
doi: 10.1016/j.apsusc.2019.06.016 |
[42] |
Kumar S.; Kaushik R. D.; Purohit L. P. J. Mol. Liq. 2021, 327, 114814.
doi: 10.1016/j.molliq.2020.114814 |
[43] |
Yang L. Y.; Dong S. Y.; Sun J. H.; Feng J. L.; Wu Q. H.; Sun S. P. J. Hazard. Mater. 2010, 179, 438.
doi: 10.1016/j.jhazmat.2010.03.023 |
[44] |
Shao Z.-Q.; Bi H.-C.; Xie X.; Wan N.; Sun L.-T. Acta Phys. Sin. 2018, 67, 16. (in Chinese)
|
(邵梓桥, 毕恒昌, 谢骁, 万能, 孙立涛, 物理学报, 2018, 67, 16.)
|
|
[45] |
Kumar G.; Kumar J.; Bag M.; Dutta R. K. Sep. Purif. Technol. 2022, 292, 121040.
doi: 10.1016/j.seppur.2022.121040 |
[46] |
Dharmana G.; Gurugubelli T. R.; Masabattula P. S. R.; Babu B.; Yoo K. Catalysts 2022, 12, 3.
doi: 10.3390/catal12010003 |
[47] |
Zhang Y.; Zhou J. B.; Feng Q. Q.; Chen X.; Hu Z. S. Chemosphere 2018, 212, 523.
doi: 10.1016/j.chemosphere.2018.08.117 |
[1] | Yang Liu, Fengqin Gao, Zhanying Ma, Yinli Zhang, Wuwu Li, Lei Hou, Xiaojuan Zhang, Yaoyu Wang. Co-based Metal-organic Framework for High-efficiency Degradation of Methylene Blue in Water by Peroxymonosulfate Activation [J]. Acta Chimica Sinica, 2024, 82(2): 152-159. |
[2] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines [J]. Acta Chimica Sinica, 2024, 82(2): 190-212. |
[3] | Yuhan Wu, Dongdong Zhang, Hongyu Yin, Zhengnan Chen, Wen Zhao, Yuhua Chi. Density Functional Theory Study of Janus In2S2X Photocatalytic Reduction of CO2 under “Double Carbon” Target [J]. Acta Chimica Sinica, 2023, 81(9): 1148-1156. |
[4] | Minghui He, Ziqiu Ye, Guiqing Lin, Sheng Yin, Xinyi Huang, Xu Zhou, Ying Yin, Bo Gui, Cheng Wang. Research Progress of Porphyrin-Based Covalent Organic Frameworks in Photocatalysis★ [J]. Acta Chimica Sinica, 2023, 81(7): 784-792. |
[5] | Li Liu, Gang Zheng, Guoqiang Fan, Hongguang Du, Jiajing Tan. Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters [J]. Acta Chimica Sinica, 2023, 81(6): 657-668. |
[6] | Fei Li, Huili Ding, Chaozhong Li. Hydrotrifluoromethylation of Alkenes with a Fluoroform-Derived Trifluoromethylboron Complex [J]. Acta Chimica Sinica, 2023, 81(6): 577-581. |
[7] | Qi Xueping, Wang Fei, Zhang Jian. A Post-Synthetic Method for the Construction of Titanium-Based Metal Organic Frameworks and Their Applications [J]. Acta Chimica Sinica, 2023, 81(5): 548-558. |
[8] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Radical-Based Dehydroxylation of Hydroxyl Groups via Oxalates [J]. Acta Chimica Sinica, 2023, 81(11): 1609-1623. |
[9] | Chunhui Yang, Jingchao Chen, Xinhan Li, Li Meng, Kaimin Wang, Weiqing Sun, Baomin Fan. Difluoroallylation of Silanes under Photoirradiation [J]. Acta Chimica Sinica, 2023, 81(1): 1-5. |
[10] | Zhongshu Xie, Zhongxin Xue, Ziwen Xu, Qian Li, Hongyu Wang, Wei-Shi Li. Conjugated Crosslinking Modification of Graphitic Carbon Nitrides and Its Effect on Visible Light-Driven Photocatalytic Hydrogen Production [J]. Acta Chimica Sinica, 2022, 80(9): 1231-1237. |
[11] | Yu Qi, Fuxiang Zhang. Photocatalytic Water Splitting for Hydrogen Production※ [J]. Acta Chimica Sinica, 2022, 80(6): 827-838. |
[12] | Heng Shu, Yide-Rigen Bao, Yong Na. Photocatalytic Oxidation of 5-Hydroxymethylfurfural Selectively into 2,5-Diformylfuran with CdS Nanotube [J]. Acta Chimica Sinica, 2022, 80(5): 607-613. |
[13] | Xue Gong, Xinguo Ma, Fengda Wan, Wangyang Duan, Xiaoling Yang, Jinrong Zhu. Study on the Electronic Structure and Optical Properties of Two-dimensional Monolayer MoSi2X4 (X=N, P, As) [J]. Acta Chimica Sinica, 2022, 80(4): 510-516. |
[14] | Pan An, Qinghui Zhang, Zhuang Yang, Jiaxing Wu, Jiaying Zhang, Yajun Wang, Yuming Li, Guiyuan Jiang. Research Progress of Solar Hydrogen Production Technology under Double Carbon Target [J]. Acta Chimica Sinica, 2022, 80(12): 1629-1642. |
[15] | Xiaohan Yu, Wei Huang, Yanguang Li. Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks [J]. Acta Chimica Sinica, 2022, 80(11): 1494-1506. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||