Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (6): 577-581.DOI: 10.6023/A23040127 Previous Articles Next Articles
Special Issue: 有机氟化学合集
Communication
投稿日期:
2023-04-11
发布日期:
2023-05-16
基金资助:
Fei Lia, Huili Dingb, Chaozhong Lia,b()
Received:
2023-04-11
Published:
2023-05-16
Contact:
* E-mail: clig@mail.sioc.ac.cn
Supported by:
Share
Fei Li, Huili Ding, Chaozhong Li. Hydrotrifluoromethylation of Alkenes with a Fluoroform-Derived Trifluoromethylboron Complex[J]. Acta Chimica Sinica, 2023, 81(6): 577-581.
Entrya | Variations from the “standard conditions” | Yieldb/% |
---|---|---|
1 | none | 75 (72) |
2 | less amount (2 mol%) of 4CzIPN used | 51 |
3 | 4DPAIPN in place of 4CzIPN | 21 |
4 | AcOH in place of PhCOOH | 69 (65) |
5 | tBuOH in place of PhCOOH | 26 |
6 | H2O in place of PhCOOH | 36 |
7 | DCM in place of DMA | 6 |
8 | PhCl in place of DMA | 5 |
9 | MeCN in place of DMA | 60 |
10 | without PhCOOH | 8 |
11 | without blue LEDs | 0 |
12 | without 4CzIPN | 0 |
Entrya | Variations from the “standard conditions” | Yieldb/% |
---|---|---|
1 | none | 75 (72) |
2 | less amount (2 mol%) of 4CzIPN used | 51 |
3 | 4DPAIPN in place of 4CzIPN | 21 |
4 | AcOH in place of PhCOOH | 69 (65) |
5 | tBuOH in place of PhCOOH | 26 |
6 | H2O in place of PhCOOH | 36 |
7 | DCM in place of DMA | 6 |
8 | PhCl in place of DMA | 5 |
9 | MeCN in place of DMA | 60 |
10 | without PhCOOH | 8 |
11 | without blue LEDs | 0 |
12 | without 4CzIPN | 0 |
[1] |
(a) Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem. Commun. 2013, 49, 7513.
doi: 10.1039/c3cc44271c |
(b) Sha, M.; Zhang, D.; Pan, R.; Xing, P.; Jiang, B. Acta Chim. Sinica 2015, 73, 395. (in Chinese)
doi: 10.6023/A15030174 |
|
(沙敏, 张丁, 潘仁明, 邢萍, 姜标, 化学学报, 2015, 73, 395.)
doi: 10.6023/A15030174 |
|
(c) Gao, B.; Zhao, Y.; Hu, J. Angew. Chem., Int. Ed. 2015, 54, 638.
|
|
(d) Li, G.; Wang, T.; Fei, F.; Su, Y.-M.; Li, Y.; Lan, Q.; Wang, X.-S. Angew. Chem., Int. Ed. 2016, 55, 3491.
doi: 10.1002/anie.201511321 |
|
(e) Gou, B.; Yang, C.; Zhang, L.; Xia, W. Acta Chim. Sinica 2017, 75, 66. (in Chinese)
doi: 10.6023/A16070341 |
|
(苟宝权, 杨超, 张磊, 夏吾炯, 化学学报, 2017, 75, 66.)
doi: 10.6023/A16070341 |
|
(f) Zhang, P.; Lu, L.; Shen, Q. Acta Chim. Sinica 2017, 75, 744. (in Chinese)
doi: 10.6023/A17050202 |
|
(张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744.)
doi: 10.6023/A17050202 |
|
(g) Gong, T.-J.; Xu, M.-Y.; Yu, S.-H.; Yu, C.-G.; Su, W.; Lu, X.; Xiao, B.; Fu, Y. Org. Lett. 2018, 20, 570.
doi: 10.1021/acs.orglett.7b03677 |
|
(h) Wu, X.; Xie, F.; Gridnev, I. D.; Zhang, W. Org. Lett. 2018, 20, 1638.
doi: 10.1021/acs.orglett.8b00379 |
|
(i) Wang, M.; Pu, X.; Zhao, Y.; Wang, P.; Li, Z.; Zhu, C.; Shi, Z. J. Am. Chem. Soc. 2018, 140, 9061.
doi: 10.1021/jacs.8b04902 |
|
(j) Wang, J.; Li, F.; Xu, Y.; Wang, J.; Wu, Z.; Yang, C.; Liu, L. Chin. J. Org. Chem. 2018, 38, 1155.
doi: 10.6023/cjoc201709049 |
|
(k) Wang, Q.; Gao, K.; Zou, J.; Zeng, R. Chin. J. Org. Chem. 2018, 38, 863. (in Chinese)
doi: 10.6023/cjoc201710025 |
|
(王清, 高克成, 邹建平, 曾润生, 有机化学, 2018, 38, 863.)
doi: 10.6023/cjoc201710025 |
|
(l) Wang, D.; Yuan, Z.; Liu, Q.; Chen, P.; Liu, G. Chin. J. Chem. 2018, 36, 507.
doi: 10.1002/cjoc.v36.6 |
|
(m) He, S.; Pi, J.; Li, Y.; Lu, X.; Fu, Y. Acta Chim. Sinica 2018, 76, 956. (in Chinese)
doi: 10.6023/A18080333 |
|
(何世江, 皮静静, 李炎, 陆熹, 傅尧, 化学学报, 2018, 76, 956.)
doi: 10.6023/A18080333 |
|
[2] |
(a) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
doi: 10.1021/jm800219f |
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
doi: 10.1039/B610213C |
|
[3] |
Han, W.; Li, Y.; Tang, H.; Liu, H. J. Fluorine Chem. 2012, 140, 7.
doi: 10.1016/j.jfluchem.2012.04.012 |
[4] |
(a) Barhdadi, R.; Troupel, M.; Périchon, J. Chem. Commun. 1998, 12, 1251.
pmid: 25146595 |
(b) Folléas, B.; Marek, I.; Normant, J. F.; Jalmes, L. S. Tetrahedron. Lett. 1998, 39, 2973.
doi: 10.1016/S0040-4039(98)00391-8 pmid: 25146595 |
|
(c) Russell, J.; Roques, N. Tetrahedron. 1998, 54, 13771.
doi: 10.1016/S0040-4020(98)00846-1 pmid: 25146595 |
|
(d) Folleas, B.; Marek, I.; Normant, J. F.; L. Jalmes, S. Tetrahedron. 2000, 56, 275.
doi: 10.1016/S0040-4020(99)00951-5 pmid: 25146595 |
|
(e) Mukhopadhyay, S.; Bell, A. T.; Srinivas, R. V.; Smith, G. S. Org. Process Res. Dev. 2004, 8, 660.
doi: 10.1021/op040007r pmid: 25146595 |
|
(f) Popov, I.; Lindeman, S.; Daugulis, O. J. Am. Chem. Soc. 2011, 133, 9286.
doi: 10.1021/ja2041942 pmid: 25146595 |
|
(g) Zanardi, A.; Novikov, M. A.; Martin, E.; Buchholz, J. B.; Grushin, V. V. J. Am. Chem. Soc. 2011, 133, 20901.
doi: 10.1021/ja2081026 pmid: 25146595 |
|
(h) Novak, P.; Lishchynskyi, A.; Grushin, V. V. Angew. Chem. Int. Ed. 2012, 51, 7767.
doi: 10.1002/anie.201201613 pmid: 25146595 |
|
(i) Novak, P.; Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2012, 134, 16167.
doi: 10.1021/ja307783w pmid: 25146595 |
|
(j) Prakash, G. K. S.; Jog, P. V; Batamack, P. T. D.; Olah, G. A. Science. 2012, 338, 1324.
doi: 10.1126/science.1227859 pmid: 25146595 |
|
(k) Lishchynskyi, A.; Novikov, M. A.; Martin, E.; Escudero-Adan, E. C.; Novak, P.; Grushin, V. V. J. Org. Chem. 2013, 78, 11126.
doi: 10.1021/jo401423h pmid: 25146595 |
|
(l) Zhang, Y.; Fujiu, M.; Serizawa, H.; Mikami, K. J. Fluorine Chem. 2013, 156, 367.
doi: 10.1016/j.jfluchem.2013.07.018 pmid: 25146595 |
|
(m) Kawai, H.; Yuan, Z.; Tokunaga, E.; Shibata, N. Org. Biomol. Chem. 2013, 11, 1446.
doi: 10.1039/c3ob27368g pmid: 25146595 |
|
(n) Lishchynskyi, A.; Berthon, G.; Grushin, V. V. Chem. Commun. 2014, 50, 10237.
doi: 10.1039/C4CC04930F pmid: 25146595 |
|
(o) Mazloomi, Z.; Bansode, A.; Benavente, P.; Lishchynskyi, A.; Urakawa, A.; Grushin, V. V. Org. Process Res. Dev. 2014, 18, 1020.
doi: 10.1021/op500109v pmid: 25146595 |
|
(p) Prakash, G. K. S.; Wang, F.; Zhang, Z.; Haiges, R.; Rahm, M.; Christe, K. O.; Mathew, T.; Olah, G. A. Angew. Chem. Int. Ed. 2014, 53, 11575.
doi: 10.1002/anie.201406505 pmid: 25146595 |
|
(q) He, L.; Tsui, G. C. Org. Lett. 2016, 18, 2800.
doi: 10.1021/acs.orglett.6b00999 pmid: 25146595 |
|
(r) He, L.; Yang, X.; Tsui, G. C. J. Org. Chem. 2017, 82, 6192.
doi: 10.1021/acs.joc.7b00755 pmid: 25146595 |
|
(s) Yang, X.; He, L.; Tsui, G. C. Org. Lett. 2017, 19, 2446.
doi: 10.1021/acs.orglett.7b01085 pmid: 25146595 |
|
(t) Punna, N.; Saito, T.; Kosobokov, M.; Tokunaga, E.; Sumii, Y.; Shibata, N. Chem. Commun. 2018, 54, 4294.
doi: 10.1039/C8CC01526K pmid: 25146595 |
|
(u) Ye, Y.; Cheung, K. P. S.; He, L.; Tsui, G. C. Org. Chem. Front. 2018, 5, 1511.
doi: 10.1039/C8QO00191J pmid: 25146595 |
|
(v) Yang, X.; Tsui, G. C. Org. Lett. 2018, 20, 1179.
doi: 10.1021/acs.orglett.8b00101 pmid: 25146595 |
|
(w) Yang, X.; Tsui, G. C. Chem. Sci. 2018, 9, 8871.
doi: 10.1039/C8SC03754J pmid: 25146595 |
|
(x) Ma, Q.; Tsui, G. C. Org. Chem. Front. 2019, 6, 27.
doi: 10.1039/C8QO00834E pmid: 25146595 |
|
(y) Hirano, K.; Saito, T.; Fujihia, Y.; Sedgwick, D. M.; Fustero, S.; Shibata, N. J. Org. Chem. 2020, 85, 7976.
doi: 10.1021/acs.joc.0c00796 pmid: 25146595 |
|
(z) Yamato, F.; Yumeng, L.; Makoto, O.; Kazuki, H.; Takumi, K.; Shibata, N. J. Org. Chem. 2021, 17, 431.
doi: 10.1021/jo01137a016 pmid: 25146595 |
|
[5] |
Xiang, J.-X.; Ouyang, Y.; Xu, X.-H.; Qing, F.-L. Angew. Chem. Int. Ed. 2019, 58, 10320.
doi: 10.1002/anie.v58.30 |
[6] |
(a) Cheng, Y.; Yu, S. Org. Lett. 2016, 18, 2962.
doi: 10.1021/acs.orglett.6b01301 |
(b) Liu, T.; Qu, C.; Xie, J.; Zhu, C. Chin. J. Org. Chem. 2019, 39, 1613.
doi: 10.6023/cjoc201901021 |
|
(c) Teng, S.; Meng, L.; Xu, B.; Tu, G.; Wu, P.; Liao, Z.; Tan, Y.; Guo, J.; Zeng, J.; Wa, Q. Chin. J. Chem. 2021, 39, 3429.
doi: 10.1002/cjoc.v39.12 |
|
[7] |
(a) Mizuta, S.; Verhoog, S.; Engle, K. M.; Khotavivattana, T.; O’Duill, M.; Wheelhouse, K.; Rassias, G.; Médebielle, M.; Gouverneur, V. J. Am. Chem. Soc. 2013, 135, 2505.
doi: 10.1021/ja401022x |
(b) Jia, H.; Häring, A. P.; Berger, F.; Zhang, L.; Ritter, T. J. Am. Chem. Soc. 2021, 143, 7623.
doi: 10.1021/jacs.1c02606 |
|
[8] |
(a) Sato, K.; Omote, M.; Ando, A.; Kumadaki, I. Org. Lett. 2004, 6, 4359.
doi: 10.1021/ol048134v pmid: 27862770 |
(b) Choi, S.; Kim, Y. J.; Kim, S. M.; Yang, J. W.; Kim, S. M.; Cho, E. J. Nat Commun. 2014, 5, 4881.
doi: 10.1038/ncomms5881 pmid: 27862770 |
|
(c) Straathof, N. J. W.; Cramer, S. E.; Hessel, V.; Noël, T. Angew. Chem. Int. Ed. 2016, 55, 15549.
doi: 10.1002/anie.201608297 pmid: 27862770 |
|
[9] |
(a) Ren, Y.-Y.; Zheng, X.; Zhang, X. Synlett. 2018, 29, 1028.
doi: 10.1055/s-0036-1591944 |
(b) Peng, D.; Fan, W.; Zhao, X.; Chen, W.; Wen, Y.; Zhang, L.; Li, S. Org. Chem. Front. 2021, 8, 6356.
doi: 10.1039/D1QO01073E |
|
[10] |
Wu, X.; Chu, L.; Qing, F.-L. Angew. Chem. Int. Ed. 2013, 52, 2198.
doi: 10.1002/anie.201208971 |
[11] |
(a) Wilger, D. J.; Gesmundo, N. J.; Nicewicz, D. A. Chem. Sci. 2013, 4, 3160.
doi: 10.1039/c3sc51209f |
(b) Zhu, L.; Wang, L.-S.; Li, B. J.; Fu, B.; Zhang, C.-P.; Li, W. Chem. Commun. 2016, 52, 6371.
doi: 10.1039/C6CC01944G |
|
(c) Cui, B.; Sun, H.; Xu, Y.; Li, L.; Duan, L.; Li, Y.-M. J. Org. Chem. 2018, 83, 6015.
doi: 10.1021/acs.joc.8b00633 |
|
(d) Louvel, D.; Souibgui, A.; Taponare, A.; Vantourout, J. C.; Tlili, A. Adv. Synth. Catal. 2022, 364, 139.
doi: 10.1002/adsc.v364.1 |
|
[12] |
Yang, Y.-F.; Lin, J.-H.; Xiao, J.-C. Org. Lett. 2021, 23, 9277.
doi: 10.1021/acs.orglett.1c03630 |
[13] |
(a) Tan, X.; Liu, Z.; Shen, H.; Zhang, P.; Zhang, Z.; Li, C. J. Am. Chem. Soc. 2017, 139, 12430.
doi: 10.1021/jacs.7b07944 pmid: 33689390 |
(b) Shen, H.; Liu, Z.; Zhang, P.; Tan, X.; Zhang, Z.; Li, C. J. Am. Chem. Soc. 2017, 139, 9843.
doi: 10.1021/jacs.7b06044 pmid: 33689390 |
|
(c) Zhang, P.; Shen, H.; Zhu, L.; Cao, W.; Li, C. Org. Lett. 2018, 20, 7062.
doi: 10.1021/acs.orglett.8b03012 pmid: 33689390 |
|
(d) Liu, Z.; Xiao, H.; Zhang, B.; Shen, H.; Zhu, L.; Li, C. Angew. Chem., Int. Ed. 2019, 58, 2510.
doi: 10.1002/anie.v58.8 pmid: 33689390 |
|
(e) Xiao, H.; Liu, Z.; Shen, H.; Zhang, B.; Zhu, L.; Li, C. Chem. 2019, 5, 940.
doi: 10.1016/j.chempr.2019.02.006 pmid: 33689390 |
|
(f) Zhang, Z.; Zhu, L.; Li, C. Chin. J. Chem. 2019, 37, 452.
doi: 10.1002/cjoc.v37.5 pmid: 33689390 |
|
(g) Liu, Z.; Shen, H.; Xiao, H.; Wang, Z.; Zhu, L.; Li, C. Org. Lett. 2019, 21, 5201.
doi: 10.1021/acs.orglett.9b01803 pmid: 33689390 |
|
(h) Xiao, H.; Shen, H.; Zhu, L.; Li, C. J. Am. Chem. Soc. 2019, 141, 11440.
doi: 10.1021/jacs.9b06141 pmid: 33689390 |
|
(i) Shen, H.; Xiao, H.; Zhu, L.; Li, C. Synlett 2020, 31, 41.
doi: 10.1055/s-0039-1690187 pmid: 33689390 |
|
(j) Zhang, Z.; He, J.; Zhu, L.; Fang, Y.; Li, C. Chin. J. Chem. 2020, 38, 787.
doi: 10.1002/cjoc.v38.7 pmid: 33689390 |
|
(k) Zhang, H.; Xiao, H.; Jiang, F.; Fang, Y.; Zhu, L.; Li, C. Org. Lett. 2021, 23, 2268.
doi: 10.1021/acs.orglett.1c00390 pmid: 33689390 |
|
(l) Xiao, H.; Zhang, Z.; Fang, Y.; Zhu, L.; Li, C. Chem. Soc. Rev. 2021, 50, 6308.
doi: 10.1039/D1CS00200G pmid: 33689390 |
|
[14] |
(a) Elkin, P. K.; Levin, V. V.; Dilman, A. D.; Struchkova, M. I.; Belyakov, P. A.; Tartakovsky, V. A. Tetrahedron Lett. 2011, 52, 5259.
doi: 10.1016/j.tetlet.2011.07.141 |
(b) Levin, V. V.; Dilman, A. D.; Belyakov, P. A.; Struchkova, M. I.; Tartakovsky, V. A. Tetrahedron Lett. 2011, 52, 281.
doi: 10.1016/j.tetlet.2010.11.025 |
|
(c) Knauber, T.; Arikan, F.; Roschenthaler, G. V.; Gooben, L. J. Chem. Eur. J. 2011, 17, 2689.
doi: 10.1002/chem.201002749 |
|
(d) Khan, B. A.; Buba, A. E.; Gooben, L. J. Chem. Eur. J. 2012, 18, 1577.
doi: 10.1002/chem.v18.6 |
|
(e) Levin, V. V.; Elkin, P. K.; Struchkova, M. I.; Dilman, A. D. J. Fluorine Chem. 2013, 154, 43.
doi: 10.1016/j.jfluchem.2013.06.007 |
|
(f) Geri, J. B.; Szymczak, N. K. J. Am. Chem. Soc. 2017, 139, 9811.
doi: 10.1021/jacs.7b05408 |
|
(g) Geri, J. B.; Wolfe, M. M. W.; Szymczak, N. K. Angew. Chem. Int. Ed. 2018, 57, 1381.
doi: 10.1002/anie.v57.5 |
|
(h) Smirnov, V. O.; Maslov, A. S.; Kokorekin, V. A.; Korlyukov, A. A.; Dilman, A. D. Chem. Commun. 2018, 54, 2236.
doi: 10.1039/C8CC00245B |
|
(i) Dou, G.-Y.; Jiang, Y.-Y.; Xu, K.; Zeng, C.-C. Org. Chem. Front. 2019, 6, 2392.
doi: 10.1039/C9QO00552H |
|
(j) Domino, K.; Johansen, M. B.; Daasbjerg, K.; Skrydstrup, T. Organometallics 2020, 39, 688.
doi: 10.1021/acs.organomet.9b00849 |
|
(k) Ge, H.; Wu, B.; Liu, Y.; Wang, H.; Shen, Q. ACS Catal. 2020, 10, 12414.
doi: 10.1021/acscatal.0c03776 |
|
(l) McClain, E. J.; Monos, T. M.; Mori, M.; Beatty, J. W.; Stephenson, C. R. J. ACS Catal. 2020, 10, 12636.
doi: 10.1021/acscatal.0c03837 |
|
(m) Li, M.; Li, G.; Dai, C.; Zhou, W.; Zhan, W.; Gao, M.; Rong, Y.; Tan, Z.; Deng, W. Org. Biomol. Chem. 2021, 19, 8301.
doi: 10.1039/D1OB01417J |
|
(n) Shen, G.-B.; Yu, H.-Y.; Xu, Z.; Cao, W.; Liu, J.; Xie, L.; Yan, M. Org. Biomol. Chem., 2022, 20, 2831.
doi: 10.1039/D2OB00056C |
|
[15] |
(a) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
doi: 10.1038/nature11687 |
(b) Shang, T.-Y.; Lu, L.-H.; Cao, Z.; Liu, Y.; He, W.-M.; Yu, B. Chem. Commun. 2019, 55, 5408.
doi: 10.1039/C9CC01047E |
|
(c) Singh, P. P.; Srivastava, V. Org. Biomol. Chem. 2021, 19, 313.
doi: 10.1039/D0OB01884H |
|
[16] |
Kaiser, D.; Noble, A.; Fasano, V.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 14104.
doi: 10.1021/jacs.9b07564 |
[1] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines [J]. Acta Chimica Sinica, 2024, 82(2): 190-212. |
[2] | Guanglong Huang, Xiao-Song Xue. Computational Study on the Mechanism of Chen’s Reagent as Trifluoromethyl Source [J]. Acta Chimica Sinica, 2024, 82(2): 132-137. |
[3] | Yuhan Wu, Dongdong Zhang, Hongyu Yin, Zhengnan Chen, Wen Zhao, Yuhua Chi. Density Functional Theory Study of Janus In2S2X Photocatalytic Reduction of CO2 under “Double Carbon” Target [J]. Acta Chimica Sinica, 2023, 81(9): 1148-1156. |
[4] | Jiawen Liu, Weihuang Lin, Weijia Wang, Xueyi Guo, Ying Yang. Synthesis and Photocatalytic Degradation of Cu1.94S-SnS Nano-heterojunction [J]. Acta Chimica Sinica, 2023, 81(7): 725-734. |
[5] | Minghui He, Ziqiu Ye, Guiqing Lin, Sheng Yin, Xinyi Huang, Xu Zhou, Ying Yin, Bo Gui, Cheng Wang. Research Progress of Porphyrin-Based Covalent Organic Frameworks in Photocatalysis★ [J]. Acta Chimica Sinica, 2023, 81(7): 784-792. |
[6] | Li Liu, Gang Zheng, Guoqiang Fan, Hongguang Du, Jiajing Tan. Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters [J]. Acta Chimica Sinica, 2023, 81(6): 657-668. |
[7] | Qi Xueping, Wang Fei, Zhang Jian. A Post-Synthetic Method for the Construction of Titanium-Based Metal Organic Frameworks and Their Applications [J]. Acta Chimica Sinica, 2023, 81(5): 548-558. |
[8] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Radical-Based Dehydroxylation of Hydroxyl Groups via Oxalates [J]. Acta Chimica Sinica, 2023, 81(11): 1609-1623. |
[9] | Chunhui Yang, Jingchao Chen, Xinhan Li, Li Meng, Kaimin Wang, Weiqing Sun, Baomin Fan. Difluoroallylation of Silanes under Photoirradiation [J]. Acta Chimica Sinica, 2023, 81(1): 1-5. |
[10] | Zhongshu Xie, Zhongxin Xue, Ziwen Xu, Qian Li, Hongyu Wang, Wei-Shi Li. Conjugated Crosslinking Modification of Graphitic Carbon Nitrides and Its Effect on Visible Light-Driven Photocatalytic Hydrogen Production [J]. Acta Chimica Sinica, 2022, 80(9): 1231-1237. |
[11] | Yu Qi, Fuxiang Zhang. Photocatalytic Water Splitting for Hydrogen Production※ [J]. Acta Chimica Sinica, 2022, 80(6): 827-838. |
[12] | Heng Shu, Yide-Rigen Bao, Yong Na. Photocatalytic Oxidation of 5-Hydroxymethylfurfural Selectively into 2,5-Diformylfuran with CdS Nanotube [J]. Acta Chimica Sinica, 2022, 80(5): 607-613. |
[13] | Xue Gong, Xinguo Ma, Fengda Wan, Wangyang Duan, Xiaoling Yang, Jinrong Zhu. Study on the Electronic Structure and Optical Properties of Two-dimensional Monolayer MoSi2X4 (X=N, P, As) [J]. Acta Chimica Sinica, 2022, 80(4): 510-516. |
[14] | Pan An, Qinghui Zhang, Zhuang Yang, Jiaxing Wu, Jiaying Zhang, Yajun Wang, Yuming Li, Guiyuan Jiang. Research Progress of Solar Hydrogen Production Technology under Double Carbon Target [J]. Acta Chimica Sinica, 2022, 80(12): 1629-1642. |
[15] | Xiaohan Yu, Wei Huang, Yanguang Li. Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks [J]. Acta Chimica Sinica, 2022, 80(11): 1494-1506. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||