Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (10): 1379-1386.DOI: 10.6023/A23050220 Previous Articles     Next Articles

Original article

离子液体非共价诱导制备碳纳米管/石墨烯集流体用于钠金属负极

刘稳a, 王昱捷a, 杨慧琴a, 李成杰b,*(), 吴娜c,*(), 颜洋a,*()   

  1. a 大连理工大学 化工学院 精细化工国家重点实验室 盘锦 124221
    b 潍坊科技学院 化工与环境学院 山东省化工资源清洁利用工程实验室 潍坊 262700
    c 河北师范大学 化学与材料科学学院 河北省无机纳米材料重点实验室 石家庄 050024
  • 投稿日期:2023-05-10 发布日期:2023-07-21
  • 基金资助:
    国家自然科学基金(22179018); 国家自然科学基金(22279028); 辽宁省自然科学基金(2021MS132); 山东省自然科学基金(ZR2020QB129); 河北省杰出青年基金(B2021205019)

The Preparation of Carbon Nanotubes/Reduced Graphene Oxide Current Collector by Non-covalent Induction of Ionic Liquid for Sodium Metal Anode

Wen Liua, Yujie Wanga, Huiqin Yanga, Chengjie Lib(), Na Wuc(), Yang Yana()   

  1. a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
    b Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology, Weifang 262700, China
    c Key Laboratory of Inorganic Nanomaterials of Hebei Province, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
  • Received:2023-05-10 Published:2023-07-21
  • Contact: *E-mail: cjli@wfust.edu.cn; willywu@hebtu.edu.cn; yanyang@dlut.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22179018); National Natural Science Foundation of China(22279028); Natural Science Foundation of Liaoning Province(2021MS132); Shandong Provincial Natural Science Foundation(ZR2020QB129); Natural Science Foundation of Hebei Province(B2021205019)

Sodium metal batteries have been regarded as promising candidates for next-generation energy storage systems due to their impressive capacity and natural abundance. However, the high reactivity of Na, unstable solid electrolyte interface (SEI) and Na metal dendrite growth with safety hazards inhibit their applications. Various strategies have been proposed to solve the above issues. Designing porous current collectors has been recognized as one of the most promising solutions. Porous carbon/carbon nanotubes/graphene- based materials are widely investigated as host materials for sodium metal anode. However, the sp2 carbon faces serious issues, such as aggregation or stacking because of their π-π interactions. Herein, we tackle this issue by using ionic liquid as additive during hydrothermal process. The non-covalent interaction between 1-butyl-3-methylimidazolium (Bmim+) and sp2 carbon (carbon nanotubes and reduced graphene oxide) helps to inhibit the aggregation of CNTs and the stacking of rGO layers. Also, their interactions induced the CNTs and rGO to form three dimensional (3D) porous carbon (3D-GC) current collector. The ionic liquid 1-butyl-3-methylimidazolium bisulfate ([Bmim][HSO4]) plays great role as a stabilizer and surfactant. The reduced surface tension of the system is also favorable for uniformly interweaving the CNTs and rGO. The prepared 3D-GC exhibit micro-meso-macro porous structure, which provides a large storage space for sodium metal. Meantime, the composite shows a high electrical conductivity, leading to a low deposition overpotential (5.6 mV) of sodium metal. As a result, the 3D-GC@Na anode exhibit an impressive cycling stability for over 1450 cycles (2900 h) at 1 mA•cm−2 with a capacity of 1 mAh•cm−2. Moreover, when being used in full cells with Na3V2(PO4)2F3 as cathode, they also show well performances.

Key words: ionic liquid, reduced graphene oxide, carbon nanotube, non-covalent interaction, sodium metal anode