Acta Chimica Sinica ›› 2025, Vol. 83 ›› Issue (7): 709-715.DOI: 10.6023/A25020055 Previous Articles     Next Articles

Article

氧空位增强PdNi/HfO2催化剂在乙二醇电催化氧化中的活性

张娜娜, 李静*()   

  1. 重庆大学化学化工学院 重庆 401331
  • 投稿日期:2025-02-25 发布日期:2025-07-28
  • 基金资助:
    国家重点研发计划(2022YFA1504200)

Oxygen Vacancies Enhance the Activity of PdNi/HfO2 Catalysts for Ethylene Glycol Electrocatalytic Oxidation

Nana Zhang, Jing Li*()   

  1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331
  • Received:2025-02-25 Published:2025-07-28
  • Contact: *E-mail: LiJing@cqu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFA1504200)

To further enhance the performance of direct ethylene glycol fuel cells, the development of highly efficient electrocatalysts for the ethylene glycol oxidation reaction (EGOR) is crucial. Although PdNi alloy nanocrystals exhibit excellent EGOR activity, their performance still falls short of the practical application requirements for fuel cells. Based on this, this study proposes an innovative strategy to enhance the electrocatalytic activity of PdNi alloys by introducing oxygen vacancies (Ov). By doping Ni into HfO2, the transformation of HfO2 from monoclinic to amorphous phases is induced, promoting the formation of high concentrations of oxygen vacancies within HfO2 and thereby regulating the electronic structure and catalytic activity of the supported PdNi alloy. It was found that at lower Ni doping levels, a monoclinic carrier Ni/c-HfO2 is obtained; at medium Ni doping levels, an amorphous carrier Ni/HfO2-Ov rich in oxygen vacancies is obtained; and at high Ni doping levels, an amorphous Ni/HfO2 without oxygen vacancies is obtained. This indicates that Ni doping can simultaneously regulate both the crystal structure and oxygen vacancy concentration of HfO2. Further introduction of a Pd2+ precursor onto the surface of the HfO2 carrier followed by simple solution reduction prepares the PdNi alloy-supported catalyst. The study revealed that in a 1 mol/L KOH+1 mol/L ethylene glycol (EG) electrolyte solution, PdNi/HfO2-Ov exhibits excellent performance for EGOR with the lowest onset potential (0.3 V), the smallest charge transfer resistance (3.28 Ω), and mass activity (MA) and specific activity (SA) reaching 10.28 and 38.6 mA•cm-2, respectively. Compared to PdNi/HfO2 without oxygen vacancies and commercial Pd/C catalysts, the EGOR performance is significantly improved. X-ray photoelectron spectroscopy (XPS) analysis revealed that the introduction of oxygen vacancies facilitates charge transfer from Pd to the HfO2 carrier, thereby optimizing the electronic structure of Pd and accelerating the reaction kinetics. The research approach of regulating both the crystal structure and oxygen vacancy defects of the HfO2 carrier through Ni doping, and further regulating the electronic structure and intrinsic activity of the Pd alloy through oxygen vacancies, provides a new strategy for designing anode catalysts for direct ethylene glycol fuel cells.

Key words: direct ethylene glycol fuel cell, ethylene glycol oxidation, palladium-nickel alloy, oxygen vacancy, HfO2