Acta Chimica Sinica ›› 2025, Vol. 83 ›› Issue (9): 1055-1071.DOI: 10.6023/A25030074 Previous Articles     Next Articles

Review

机械力环境化学: 污染物转化机理与应用展望

张聿棋, 刘金泽, 薛东旭, 史昱翔*(), 张伟贤*()   

  1. 同济大学环境科学与工程学院 污染控制与资源化研究国家重点实验室 上海 200092
  • 投稿日期:2025-03-12 发布日期:2025-05-13
  • 作者简介:

    张聿棋, 同济大学环境科学与工程学院2023级硕士生, 研究方向为零价铁回收水中重金属元素.

    刘金泽, 同济大学环境科学与工程学院2024级硕士生, 研究方向为机械力化学制备零价铁环境功能材料.
    薛东旭, 同济大学环境科学与工程学院2024级直博生, 研究方向为电催化硝酸盐还原.
    史昱翔, 同济大学环境科学与工程学院2020级直博生, 研究方向为机械力化学在水中金属回收方面的机制和应用. 已发表SCI论文7篇.
    张伟贤, 教授、博士生导师, 国家特聘专家, 自2011年起担任污染控制与资源化研究国家重点实验室主任. 1984年毕业于同济大学, 1996年获得美国约翰•霍普金斯大学(The Johns Hopkins University)环境工程博士学位, 曾任美国里海大学(Lehigh University)教授. 主持过国家自然科学基金海外及港澳学者合作研究基金及多项国家自然科学基金项目, 长期致力于环境中重金属及持久性有机污染物的基础与应用研究, 是环境纳米技术的先驱之一, 也是纳米零价铁技术的创始研究者. 在纳米零价铁的合成、表征、污染物反应机理研究及其在地下水修复和废水处理中的应用方面, 发表了一系列经典论文.
  • 基金资助:
    国家重点研发计划(2022YFC3702102); 广东省发展计划(2020B0202080001)

Mechanochemistry: Pollutant Transformation Mechanism and Environmental Applications

Yuqi Zhang, Jinze Liu, Dongxu Xue, Yuxiang Shi*(), Weixian Zhang*()   

  1. State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092
  • Received:2025-03-12 Published:2025-05-13
  • Contact: * E-mail: 2011200@tongji.edu.cn;zhangwx@tongji.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFC3702102); Development Program of Guangdong Province(2020B0202080001)

Mechanochemistry (MC) is a subfield of chemistry that focuses on chemical transformation driven by mechanical energy. By manipulating mechanical energy to induce the combination and rearrangement of chemical bonds, MC stipulates unique reaction pathways and products that are not achievable by conventional chemical reactions. The high-intensity energy input is especially advantageous for transformation and remediation of persistent environmental pollutants. One prominent example is the mechanochemical degradation of perfluorooctane sulfonate (PFOS), a harmful environmental contaminant. By breaking the C—F bonds without the need for additional chemical reagents, mechanochemical methods can achieve nearly complete defluorination, offering a green approach to detoxify persistent pollutants. Recent research on piezo-catalytic degradation of organic pollutants has demonstrated that the method consistently maintains degradation efficiencies greater than 97% across five cycles. This highlights its robustness and potential for widespread applications in environmental remediation. MC has also contributed to the synthesis of novel materials, including single-atom catalysts (SACs), nanoscale zero-valent iron (nZVI), and metal-organic frameworks (MOFs). The fundamentals of MC include mechanical activation, introduction of structural defects, and enhancement of reaction kinetics. Early studies have successfully applied mechanochemical processes to solid waste treatment and the recovery of toxic heavy metals, such as the selective extraction of valuable metals from spent lithium-ion battery cathodes, which led to an increase in the separation factor from 56.9 to 1,475. As the field continues to evolve, future research is needed to deepen our understanding on mechanochemistry, particularly in the areas of water treatment and hazardous solid waste management. This will help address challenges associated with high costs, toxic chemical reagents, and byproducts of hazardous wastes, which are enduring challenges in environmental science and technology.

Key words: mechanochemistry, industrial wastewater treatment, hazardous waste management, resource recovery, contaminant degradation, environmental materials