Acta Chimica Sinica ›› 2025, Vol. 83 ›› Issue (7): 755-772.DOI: 10.6023/A25040105 Previous Articles     Next Articles

Review

靶向酸敏感离子通道的毒素肽: 镇痛机制与生物合成开发

李海婷a,b, 吴小余a,*(), 曹春阳b,*()   

  1. a 上海大学 理学院化学系 上海 200444
    b 中国科学院上海有机化学研究所 生命过程小分子调控全国重点实验室 上海 200032
  • 投稿日期:2025-04-03 发布日期:2025-07-28
  • 作者简介:

    李海婷, 女, 上海大学和中科院上海有机化学研究所2022级联合培养有机化学专业硕士研究生, 主要研究方向为靶向离子通道的毒素多肽的生物合成和应用.

    吴小余, 男, 上海大学化学系教授, 博士生导师, 2000~2005年于中科院上海有机化学研究所攻读博士, 2006~2008年于新加坡国立大学进行博士后研究, 2008年进入上海大学工作至今, 主要研究方向为不对称催化和医药中间体合成工艺开发.

    曹春阳, 男, 1998~2001年于中科院上海有机化学研究所攻读博士, 2001~2005年在约翰霍普金斯大学医学院分子药理系从事博士后研究, 2005~2006年转至美国Salk生物研究院结构生物学中心从事助理研究员, 2006年至今为中国科学院上海有机化学研究所“百人计划”研究员, 上海市“浦江计划”获得者, 主要研究方向为以NMR技术为主导, 结合蛋白质晶体学, 开展与肿瘤发生与发展、病毒感染相关的蛋白质与核酸结构与功能分子机制研究、天然产物活性分子筛选与药物分子设计.

  • 基金资助:
    中国科学院战略性先导科技专项(XDB1060000)

Targeting Acid-Sensing Ion Channels with Toxin Peptides: Analgesic Mechanisms and Biosynthesis Development

Haiting Lia,b, Xiaoyu Wua,*(), Chunyang Caob,*()   

  1. a Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
    b State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Received:2025-04-03 Published:2025-07-28
  • Contact: *E-mail: wuxy@shu.edu.cn; ccao@mail.sioc.ac.cn;E-mail: ccao@mail.sioc.ac.cn
  • Supported by:
    Strategic Priority Research Program of the Chinese Academy of Sciences(XDB1060000)

Acid-sensing ion channels (ASICs), as proton-gated cation channels, play critical roles in acidosis-evoked pain signaling through their subtype-specific contributions to nociceptive pathways. ASIC1a predominantly drives central sensitization in neuropathic pain, while ASIC3 mediates peripheral inflammatory and musculoskeletal pain. While conventional analgesics, such as opioids and nonsteroidal anti-inflammatory drugs, are limited by central side effects and poor selectivity, natural toxin peptides demonstrate remarkable therapeutic potential. PcTx1 (from tarantula venom), Mambalgin (snake-derived), and APETx2 (sea anemone toxin) exhibit nanomolar affinity for ASIC extracellular domains, effectively modulating channel gating to achieve potent analgesia without addiction risks. This review systematically elucidates the molecular architecture and gating mechanisms of ASICs, providing in-depth analysis of representative toxin peptides' mechanisms towards ASICs. PcTx1 stabilizes ASIC1a in a desensitized state through acidic pocket engagement, while Mambalgin-1 locks the thumb domain in resting state to inhibit activation. APETx2 is proposed to block ASIC3 via a basic amino acid cluster binding to the site between palm and wrist domains, as suggested by homology modeling. Biosynthetic strategies have advanced significantly, with Escherichia coli serving as a cost-effective platform for rapid production of disulfide-rich peptides through engineered oxidative folding pathways (e.g., the DisCoTune system). Pichia pastoris enables secretory expression with low immunogenicity by post-translational modification systems and α-mating factor signal peptides. For complex modifications, mammalian cells (e.g., Chinese hamster ovary cells) provide precise folding and human-like post-translational processing. Key optimizations include solubility-enhancing tags (MBP, SUMO), affinity tags (poly-His), and chemical modifications like PEGylation to improve the pharmacokinetics of toxin peptides. Finally, the discussion extends to challenges in clinical translation of toxin peptide drugs, including incomplete ASIC subtype structural resolution and off-target effects. AI-driven design (AlphaFold2-predicted models) and stimuli-responsive nanocarriers (lipid-based systems) may address these limitations. With interdisciplinary advancements and cross-application of technologies, toxin peptides demonstrate promising potential to overcome limitations of conventional analgesic therapies.

Key words: acid-sensing ion channel (ASIC), toxin peptide, analgesics, biosynthesis