Acta Chimica Sinica ›› 2010, Vol. 68 ›› Issue (16): 1597-1602. Previous Articles     Next Articles

Full Papers

4-巯乙基吡啶配基与IgG相互作用的分子模拟研究

王红寅1,林东强*,1,姚善泾1,贠军贤2,姚克俭2   

  1. (1化学工程联合国家重点实验室 浙江大学化学工程与生物工程学系 杭州 310027)
    (2绿色化学合成技术国家重点实验室培育基地 浙江工业大学 杭州 310032)
  • 投稿日期:2009-11-21 修回日期:2010-03-08 发布日期:2010-04-19
  • 通讯作者: 林东强 E-mail:lindq@zju.edu.cn
  • 基金资助:

    国家自然科学基金(20776129);国家自然科学基金(20976154);新世纪优秀人才支持计划

Molecular Simulation of the Interactions between 4-Mercaptoethyl-pyridine Ligand and IgG

Wang Hongyin1 Lin Dongqiang*,1 Yao Shanjing1 Yun Junxian2 Yao Kejian2   

  1. (1 State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027)
    (2 State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032)
  • Received:2009-11-21 Revised:2010-03-08 Published:2010-04-19
  • Contact: Lin Dong-Qiang E-mail:lindq@zju.edu.cn

Hydrophobic charge induction chromatography (HCIC) with 4-mercaptoethyl-pyridine (MEP) as the ligand has been proved to be effective for the separation of antibodies from different feedstocks. In the present work, the methods of molecular simulation are introduced to study the interactions between MEP and IgG. Firstly, molecular docking is used to identify the potential binding sites around the protein surface of Fc Chain A of IgG, and 12 potential binding sites are found. Then 6 sites are further studied using the molecular dynamics simulations. The results indicate that MEP ligand tends to bind on the hydrophobic area of Fc Chain A surface. At neutral conditions, MEP can bind stably on the site around TYR319 and LEU309 of Fc Chain A, which shows obviously a pocket structure with strong hydrophobicity. The analysis of trajectory reveals that hydrogen bonds exist between MEP and the former two amino acids around the simulation period. The binding of MEP to other sites are relatively unstable, and depends on the initial binding modes of MEP. When the pH lowers to 4.0, it can be found that MEP bound formerly on the Fc Chain A departs quickly due to the electrostatic repulsion, weaker hydrophobic interaction and the disappearance of hydrogen bonds. With the aids of molecular simulations, the separation mechanism of HCIC is verified from the view of molecular interactions-the binding with hydrophobic interactions at neutral condition and the desorption with electrostatic repulsion at acid condition.

Key words: 4-mercaptoethyl-pyridine, IgG, hydrophobic charge induction chromatography, binding mode, molecular simulation

CLC Number: